Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x+20y=1100,60x+80y=1600
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5x+20y=1100
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
5x=-20y+1100
Subtract 20y from both sides of the equation.
x=\frac{1}{5}\left(-20y+1100\right)
Divide both sides by 5.
x=-4y+220
Multiply \frac{1}{5} times -20y+1100.
60\left(-4y+220\right)+80y=1600
Substitute -4y+220 for x in the other equation, 60x+80y=1600.
-240y+13200+80y=1600
Multiply 60 times -4y+220.
-160y+13200=1600
Add -240y to 80y.
-160y=-11600
Subtract 13200 from both sides of the equation.
y=\frac{145}{2}
Divide both sides by -160.
x=-4\times \frac{145}{2}+220
Substitute \frac{145}{2} for y in x=-4y+220. Because the resulting equation contains only one variable, you can solve for x directly.
x=-290+220
Multiply -4 times \frac{145}{2}.
x=-70
Add 220 to -290.
x=-70,y=\frac{145}{2}
The system is now solved.
5x+20y=1100,60x+80y=1600
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}5&20\\60&80\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1100\\1600\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}5&20\\60&80\end{matrix}\right))\left(\begin{matrix}5&20\\60&80\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&20\\60&80\end{matrix}\right))\left(\begin{matrix}1100\\1600\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}5&20\\60&80\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&20\\60&80\end{matrix}\right))\left(\begin{matrix}1100\\1600\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&20\\60&80\end{matrix}\right))\left(\begin{matrix}1100\\1600\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{80}{5\times 80-20\times 60}&-\frac{20}{5\times 80-20\times 60}\\-\frac{60}{5\times 80-20\times 60}&\frac{5}{5\times 80-20\times 60}\end{matrix}\right)\left(\begin{matrix}1100\\1600\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{10}&\frac{1}{40}\\\frac{3}{40}&-\frac{1}{160}\end{matrix}\right)\left(\begin{matrix}1100\\1600\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{10}\times 1100+\frac{1}{40}\times 1600\\\frac{3}{40}\times 1100-\frac{1}{160}\times 1600\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-70\\\frac{145}{2}\end{matrix}\right)
Do the arithmetic.
x=-70,y=\frac{145}{2}
Extract the matrix elements x and y.
5x+20y=1100,60x+80y=1600
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
60\times 5x+60\times 20y=60\times 1100,5\times 60x+5\times 80y=5\times 1600
To make 5x and 60x equal, multiply all terms on each side of the first equation by 60 and all terms on each side of the second by 5.
300x+1200y=66000,300x+400y=8000
Simplify.
300x-300x+1200y-400y=66000-8000
Subtract 300x+400y=8000 from 300x+1200y=66000 by subtracting like terms on each side of the equal sign.
1200y-400y=66000-8000
Add 300x to -300x. Terms 300x and -300x cancel out, leaving an equation with only one variable that can be solved.
800y=66000-8000
Add 1200y to -400y.
800y=58000
Add 66000 to -8000.
y=\frac{145}{2}
Divide both sides by 800.
60x+80\times \frac{145}{2}=1600
Substitute \frac{145}{2} for y in 60x+80y=1600. Because the resulting equation contains only one variable, you can solve for x directly.
60x+5800=1600
Multiply 80 times \frac{145}{2}.
60x=-4200
Subtract 5800 from both sides of the equation.
x=-70
Divide both sides by 60.
x=-70,y=\frac{145}{2}
The system is now solved.