\left\{ \begin{array} { l } { 5 x + 10 y = 20 } \\ { 20 x - 17 y = 3 } \end{array} \right.
Solve for x, y
x = \frac{74}{57} = 1\frac{17}{57} \approx 1.298245614
y = \frac{77}{57} = 1\frac{20}{57} \approx 1.350877193
Graph
Share
Copied to clipboard
5x+10y=20,20x-17y=3
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5x+10y=20
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
5x=-10y+20
Subtract 10y from both sides of the equation.
x=\frac{1}{5}\left(-10y+20\right)
Divide both sides by 5.
x=-2y+4
Multiply \frac{1}{5} times -10y+20.
20\left(-2y+4\right)-17y=3
Substitute -2y+4 for x in the other equation, 20x-17y=3.
-40y+80-17y=3
Multiply 20 times -2y+4.
-57y+80=3
Add -40y to -17y.
-57y=-77
Subtract 80 from both sides of the equation.
y=\frac{77}{57}
Divide both sides by -57.
x=-2\times \frac{77}{57}+4
Substitute \frac{77}{57} for y in x=-2y+4. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{154}{57}+4
Multiply -2 times \frac{77}{57}.
x=\frac{74}{57}
Add 4 to -\frac{154}{57}.
x=\frac{74}{57},y=\frac{77}{57}
The system is now solved.
5x+10y=20,20x-17y=3
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}5&10\\20&-17\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\3\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}5&10\\20&-17\end{matrix}\right))\left(\begin{matrix}5&10\\20&-17\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&10\\20&-17\end{matrix}\right))\left(\begin{matrix}20\\3\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}5&10\\20&-17\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&10\\20&-17\end{matrix}\right))\left(\begin{matrix}20\\3\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&10\\20&-17\end{matrix}\right))\left(\begin{matrix}20\\3\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{17}{5\left(-17\right)-10\times 20}&-\frac{10}{5\left(-17\right)-10\times 20}\\-\frac{20}{5\left(-17\right)-10\times 20}&\frac{5}{5\left(-17\right)-10\times 20}\end{matrix}\right)\left(\begin{matrix}20\\3\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{17}{285}&\frac{2}{57}\\\frac{4}{57}&-\frac{1}{57}\end{matrix}\right)\left(\begin{matrix}20\\3\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{17}{285}\times 20+\frac{2}{57}\times 3\\\frac{4}{57}\times 20-\frac{1}{57}\times 3\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{74}{57}\\\frac{77}{57}\end{matrix}\right)
Do the arithmetic.
x=\frac{74}{57},y=\frac{77}{57}
Extract the matrix elements x and y.
5x+10y=20,20x-17y=3
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
20\times 5x+20\times 10y=20\times 20,5\times 20x+5\left(-17\right)y=5\times 3
To make 5x and 20x equal, multiply all terms on each side of the first equation by 20 and all terms on each side of the second by 5.
100x+200y=400,100x-85y=15
Simplify.
100x-100x+200y+85y=400-15
Subtract 100x-85y=15 from 100x+200y=400 by subtracting like terms on each side of the equal sign.
200y+85y=400-15
Add 100x to -100x. Terms 100x and -100x cancel out, leaving an equation with only one variable that can be solved.
285y=400-15
Add 200y to 85y.
285y=385
Add 400 to -15.
y=\frac{77}{57}
Divide both sides by 285.
20x-17\times \frac{77}{57}=3
Substitute \frac{77}{57} for y in 20x-17y=3. Because the resulting equation contains only one variable, you can solve for x directly.
20x-\frac{1309}{57}=3
Multiply -17 times \frac{77}{57}.
20x=\frac{1480}{57}
Add \frac{1309}{57} to both sides of the equation.
x=\frac{74}{57}
Divide both sides by 20.
x=\frac{74}{57},y=\frac{77}{57}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}