\left\{ \begin{array} { l } { 45 y + 15 x = 60 } \\ { y = 60 } \end{array} \right.
Solve for y, x
x=-176
y=60
Graph
Share
Copied to clipboard
45\times 60+15x=60
Consider the first equation. Insert the known values of variables into the equation.
2700+15x=60
Multiply 45 and 60 to get 2700.
15x=60-2700
Subtract 2700 from both sides.
15x=-2640
Subtract 2700 from 60 to get -2640.
x=\frac{-2640}{15}
Divide both sides by 15.
x=-176
Divide -2640 by 15 to get -176.
y=60 x=-176
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}