\left\{ \begin{array} { l } { 40 x + 720 y = 112 } \\ { 120 x + 2205 y = 340.5 } \end{array} \right.
Solve for x, y
x=1
y=0.1
Graph
Share
Copied to clipboard
40x+720y=112,120x+2205y=340.5
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
40x+720y=112
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
40x=-720y+112
Subtract 720y from both sides of the equation.
x=\frac{1}{40}\left(-720y+112\right)
Divide both sides by 40.
x=-18y+\frac{14}{5}
Multiply \frac{1}{40} times -720y+112.
120\left(-18y+\frac{14}{5}\right)+2205y=340.5
Substitute -18y+\frac{14}{5} for x in the other equation, 120x+2205y=340.5.
-2160y+336+2205y=340.5
Multiply 120 times -18y+\frac{14}{5}.
45y+336=340.5
Add -2160y to 2205y.
45y=4.5
Subtract 336 from both sides of the equation.
y=0.1
Divide both sides by 45.
x=-18\times 0.1+\frac{14}{5}
Substitute 0.1 for y in x=-18y+\frac{14}{5}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-9+14}{5}
Multiply -18 times 0.1.
x=1
Add \frac{14}{5} to -1.8 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=1,y=0.1
The system is now solved.
40x+720y=112,120x+2205y=340.5
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}40&720\\120&2205\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}112\\340.5\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}40&720\\120&2205\end{matrix}\right))\left(\begin{matrix}40&720\\120&2205\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}40&720\\120&2205\end{matrix}\right))\left(\begin{matrix}112\\340.5\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}40&720\\120&2205\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}40&720\\120&2205\end{matrix}\right))\left(\begin{matrix}112\\340.5\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}40&720\\120&2205\end{matrix}\right))\left(\begin{matrix}112\\340.5\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2205}{40\times 2205-720\times 120}&-\frac{720}{40\times 2205-720\times 120}\\-\frac{120}{40\times 2205-720\times 120}&\frac{40}{40\times 2205-720\times 120}\end{matrix}\right)\left(\begin{matrix}112\\340.5\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{49}{40}&-\frac{2}{5}\\-\frac{1}{15}&\frac{1}{45}\end{matrix}\right)\left(\begin{matrix}112\\340.5\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{49}{40}\times 112-\frac{2}{5}\times 340.5\\-\frac{1}{15}\times 112+\frac{1}{45}\times 340.5\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\\frac{1}{10}\end{matrix}\right)
Do the arithmetic.
x=1,y=\frac{1}{10}
Extract the matrix elements x and y.
40x+720y=112,120x+2205y=340.5
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
120\times 40x+120\times 720y=120\times 112,40\times 120x+40\times 2205y=40\times 340.5
To make 40x and 120x equal, multiply all terms on each side of the first equation by 120 and all terms on each side of the second by 40.
4800x+86400y=13440,4800x+88200y=13620
Simplify.
4800x-4800x+86400y-88200y=13440-13620
Subtract 4800x+88200y=13620 from 4800x+86400y=13440 by subtracting like terms on each side of the equal sign.
86400y-88200y=13440-13620
Add 4800x to -4800x. Terms 4800x and -4800x cancel out, leaving an equation with only one variable that can be solved.
-1800y=13440-13620
Add 86400y to -88200y.
-1800y=-180
Add 13440 to -13620.
y=\frac{1}{10}
Divide both sides by -1800.
120x+2205\times \frac{1}{10}=340.5
Substitute \frac{1}{10} for y in 120x+2205y=340.5. Because the resulting equation contains only one variable, you can solve for x directly.
120x+\frac{441}{2}=340.5
Multiply 2205 times \frac{1}{10}.
120x=120
Subtract \frac{441}{2} from both sides of the equation.
x=1
Divide both sides by 120.
x=1,y=\frac{1}{10}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}