\left\{ \begin{array} { l } { 40 x + 60 y = 3800 } \\ { 60 x + 100 y = 6000 } \end{array} \right.
Solve for x, y
x=50
y=30
Graph
Share
Copied to clipboard
40x+60y=3800,60x+100y=6000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
40x+60y=3800
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
40x=-60y+3800
Subtract 60y from both sides of the equation.
x=\frac{1}{40}\left(-60y+3800\right)
Divide both sides by 40.
x=-\frac{3}{2}y+95
Multiply \frac{1}{40} times -60y+3800.
60\left(-\frac{3}{2}y+95\right)+100y=6000
Substitute -\frac{3y}{2}+95 for x in the other equation, 60x+100y=6000.
-90y+5700+100y=6000
Multiply 60 times -\frac{3y}{2}+95.
10y+5700=6000
Add -90y to 100y.
10y=300
Subtract 5700 from both sides of the equation.
y=30
Divide both sides by 10.
x=-\frac{3}{2}\times 30+95
Substitute 30 for y in x=-\frac{3}{2}y+95. Because the resulting equation contains only one variable, you can solve for x directly.
x=-45+95
Multiply -\frac{3}{2} times 30.
x=50
Add 95 to -45.
x=50,y=30
The system is now solved.
40x+60y=3800,60x+100y=6000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}40&60\\60&100\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3800\\6000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}40&60\\60&100\end{matrix}\right))\left(\begin{matrix}40&60\\60&100\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}40&60\\60&100\end{matrix}\right))\left(\begin{matrix}3800\\6000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}40&60\\60&100\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}40&60\\60&100\end{matrix}\right))\left(\begin{matrix}3800\\6000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}40&60\\60&100\end{matrix}\right))\left(\begin{matrix}3800\\6000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{100}{40\times 100-60\times 60}&-\frac{60}{40\times 100-60\times 60}\\-\frac{60}{40\times 100-60\times 60}&\frac{40}{40\times 100-60\times 60}\end{matrix}\right)\left(\begin{matrix}3800\\6000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{3}{20}\\-\frac{3}{20}&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}3800\\6000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 3800-\frac{3}{20}\times 6000\\-\frac{3}{20}\times 3800+\frac{1}{10}\times 6000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\30\end{matrix}\right)
Do the arithmetic.
x=50,y=30
Extract the matrix elements x and y.
40x+60y=3800,60x+100y=6000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
60\times 40x+60\times 60y=60\times 3800,40\times 60x+40\times 100y=40\times 6000
To make 40x and 60x equal, multiply all terms on each side of the first equation by 60 and all terms on each side of the second by 40.
2400x+3600y=228000,2400x+4000y=240000
Simplify.
2400x-2400x+3600y-4000y=228000-240000
Subtract 2400x+4000y=240000 from 2400x+3600y=228000 by subtracting like terms on each side of the equal sign.
3600y-4000y=228000-240000
Add 2400x to -2400x. Terms 2400x and -2400x cancel out, leaving an equation with only one variable that can be solved.
-400y=228000-240000
Add 3600y to -4000y.
-400y=-12000
Add 228000 to -240000.
y=30
Divide both sides by -400.
60x+100\times 30=6000
Substitute 30 for y in 60x+100y=6000. Because the resulting equation contains only one variable, you can solve for x directly.
60x+3000=6000
Multiply 100 times 30.
60x=3000
Subtract 3000 from both sides of the equation.
x=50
Divide both sides by 60.
x=50,y=30
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}