Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x-2y-6=0,4\left(x+8\right)+40y-26=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4x-2y-6=0
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
4x-2y=6
Add 6 to both sides of the equation.
4x=2y+6
Add 2y to both sides of the equation.
x=\frac{1}{4}\left(2y+6\right)
Divide both sides by 4.
x=\frac{1}{2}y+\frac{3}{2}
Multiply \frac{1}{4} times 6+2y.
4\left(\frac{1}{2}y+\frac{3}{2}+8\right)+40y-26=0
Substitute \frac{3+y}{2} for x in the other equation, 4\left(x+8\right)+40y-26=0.
4\left(\frac{1}{2}y+\frac{19}{2}\right)+40y-26=0
Add \frac{3}{2} to 8.
2y+38+40y-26=0
Multiply 4 times \frac{19+y}{2}.
42y+38-26=0
Add 2y to 40y.
42y+12=0
Add 38 to -26.
42y=-12
Subtract 12 from both sides of the equation.
y=-\frac{2}{7}
Divide both sides by 42.
x=\frac{1}{2}\left(-\frac{2}{7}\right)+\frac{3}{2}
Substitute -\frac{2}{7} for y in x=\frac{1}{2}y+\frac{3}{2}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{1}{7}+\frac{3}{2}
Multiply \frac{1}{2} times -\frac{2}{7} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{19}{14}
Add \frac{3}{2} to -\frac{1}{7} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{19}{14},y=-\frac{2}{7}
The system is now solved.
4x-2y-6=0,4\left(x+8\right)+40y-26=0
Put the equations in standard form and then use matrices to solve the system of equations.
4\left(x+8\right)+40y-26=0
Simplify the second equation to put it in standard form.
4x+32+40y-26=0
Multiply 4 times x+8.
4x+40y+6=0
Add 32 to -26.
4x+40y=-6
Subtract 6 from both sides of the equation.
\left(\begin{matrix}4&-2\\4&40\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-6\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}4&-2\\4&40\end{matrix}\right))\left(\begin{matrix}4&-2\\4&40\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\4&40\end{matrix}\right))\left(\begin{matrix}6\\-6\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}4&-2\\4&40\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\4&40\end{matrix}\right))\left(\begin{matrix}6\\-6\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\4&40\end{matrix}\right))\left(\begin{matrix}6\\-6\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{40}{4\times 40-\left(-2\times 4\right)}&-\frac{-2}{4\times 40-\left(-2\times 4\right)}\\-\frac{4}{4\times 40-\left(-2\times 4\right)}&\frac{4}{4\times 40-\left(-2\times 4\right)}\end{matrix}\right)\left(\begin{matrix}6\\-6\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{21}&\frac{1}{84}\\-\frac{1}{42}&\frac{1}{42}\end{matrix}\right)\left(\begin{matrix}6\\-6\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{21}\times 6+\frac{1}{84}\left(-6\right)\\-\frac{1}{42}\times 6+\frac{1}{42}\left(-6\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{19}{14}\\-\frac{2}{7}\end{matrix}\right)
Do the arithmetic.
x=\frac{19}{14},y=-\frac{2}{7}
Extract the matrix elements x and y.