\left\{ \begin{array} { l } { 4 x - 15 = 0 } \\ { 7 x - 12 y - 21 = 0 } \end{array} \right.
Solve for x, y
x = \frac{15}{4} = 3\frac{3}{4} = 3.75
y=\frac{7}{16}=0.4375
Graph
Share
Copied to clipboard
4x=15
Consider the first equation. Add 15 to both sides. Anything plus zero gives itself.
x=\frac{15}{4}
Divide both sides by 4.
7\times \frac{15}{4}-12y-21=0
Consider the second equation. Insert the known values of variables into the equation.
\frac{105}{4}-12y-21=0
Multiply 7 and \frac{15}{4} to get \frac{105}{4}.
\frac{21}{4}-12y=0
Subtract 21 from \frac{105}{4} to get \frac{21}{4}.
-12y=-\frac{21}{4}
Subtract \frac{21}{4} from both sides. Anything subtracted from zero gives its negation.
y=\frac{-\frac{21}{4}}{-12}
Divide both sides by -12.
y=\frac{-21}{4\left(-12\right)}
Express \frac{-\frac{21}{4}}{-12} as a single fraction.
y=\frac{-21}{-48}
Multiply 4 and -12 to get -48.
y=\frac{7}{16}
Reduce the fraction \frac{-21}{-48} to lowest terms by extracting and canceling out -3.
x=\frac{15}{4} y=\frac{7}{16}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}