Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x+16y=12,10x+2y=96
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4x+16y=12
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
4x=-16y+12
Subtract 16y from both sides of the equation.
x=\frac{1}{4}\left(-16y+12\right)
Divide both sides by 4.
x=-4y+3
Multiply \frac{1}{4} times -16y+12.
10\left(-4y+3\right)+2y=96
Substitute -4y+3 for x in the other equation, 10x+2y=96.
-40y+30+2y=96
Multiply 10 times -4y+3.
-38y+30=96
Add -40y to 2y.
-38y=66
Subtract 30 from both sides of the equation.
y=-\frac{33}{19}
Divide both sides by -38.
x=-4\left(-\frac{33}{19}\right)+3
Substitute -\frac{33}{19} for y in x=-4y+3. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{132}{19}+3
Multiply -4 times -\frac{33}{19}.
x=\frac{189}{19}
Add 3 to \frac{132}{19}.
x=\frac{189}{19},y=-\frac{33}{19}
The system is now solved.
4x+16y=12,10x+2y=96
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}4&16\\10&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\96\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}4&16\\10&2\end{matrix}\right))\left(\begin{matrix}4&16\\10&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&16\\10&2\end{matrix}\right))\left(\begin{matrix}12\\96\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}4&16\\10&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&16\\10&2\end{matrix}\right))\left(\begin{matrix}12\\96\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&16\\10&2\end{matrix}\right))\left(\begin{matrix}12\\96\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{4\times 2-16\times 10}&-\frac{16}{4\times 2-16\times 10}\\-\frac{10}{4\times 2-16\times 10}&\frac{4}{4\times 2-16\times 10}\end{matrix}\right)\left(\begin{matrix}12\\96\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{76}&\frac{2}{19}\\\frac{5}{76}&-\frac{1}{38}\end{matrix}\right)\left(\begin{matrix}12\\96\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{76}\times 12+\frac{2}{19}\times 96\\\frac{5}{76}\times 12-\frac{1}{38}\times 96\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{189}{19}\\-\frac{33}{19}\end{matrix}\right)
Do the arithmetic.
x=\frac{189}{19},y=-\frac{33}{19}
Extract the matrix elements x and y.
4x+16y=12,10x+2y=96
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
10\times 4x+10\times 16y=10\times 12,4\times 10x+4\times 2y=4\times 96
To make 4x and 10x equal, multiply all terms on each side of the first equation by 10 and all terms on each side of the second by 4.
40x+160y=120,40x+8y=384
Simplify.
40x-40x+160y-8y=120-384
Subtract 40x+8y=384 from 40x+160y=120 by subtracting like terms on each side of the equal sign.
160y-8y=120-384
Add 40x to -40x. Terms 40x and -40x cancel out, leaving an equation with only one variable that can be solved.
152y=120-384
Add 160y to -8y.
152y=-264
Add 120 to -384.
y=-\frac{33}{19}
Divide both sides by 152.
10x+2\left(-\frac{33}{19}\right)=96
Substitute -\frac{33}{19} for y in 10x+2y=96. Because the resulting equation contains only one variable, you can solve for x directly.
10x-\frac{66}{19}=96
Multiply 2 times -\frac{33}{19}.
10x=\frac{1890}{19}
Add \frac{66}{19} to both sides of the equation.
x=\frac{189}{19}
Divide both sides by 10.
x=\frac{189}{19},y=-\frac{33}{19}
The system is now solved.