Skip to main content
Solve for u_1, u_2, u_3
Tick mark Image

Similar Problems from Web Search

Share

u_{1}=u_{2}-\frac{1}{400}
Solve 4u_{1}-4u_{2}=-\frac{1}{100} for u_{1}.
-4\left(u_{2}-\frac{1}{400}\right)+10u_{2}-6u_{3}=0
Substitute u_{2}-\frac{1}{400} for u_{1} in the equation -4u_{1}+10u_{2}-6u_{3}=0.
u_{2}=-\frac{1}{600}+u_{3} u_{3}=\frac{1}{3}u_{2}+\frac{1}{3600}
Solve the second equation for u_{2} and the third equation for u_{3}.
u_{3}=\frac{1}{3}\left(-\frac{1}{600}+u_{3}\right)+\frac{1}{3600}
Substitute -\frac{1}{600}+u_{3} for u_{2} in the equation u_{3}=\frac{1}{3}u_{2}+\frac{1}{3600}.
u_{3}=-\frac{1}{2400}
Solve u_{3}=\frac{1}{3}\left(-\frac{1}{600}+u_{3}\right)+\frac{1}{3600} for u_{3}.
u_{2}=-\frac{1}{600}-\frac{1}{2400}
Substitute -\frac{1}{2400} for u_{3} in the equation u_{2}=-\frac{1}{600}+u_{3}.
u_{2}=-\frac{1}{480}
Calculate u_{2} from u_{2}=-\frac{1}{600}-\frac{1}{2400}.
u_{1}=-\frac{1}{480}-\frac{1}{400}
Substitute -\frac{1}{480} for u_{2} in the equation u_{1}=u_{2}-\frac{1}{400}.
u_{1}=-\frac{11}{2400}
Calculate u_{1} from u_{1}=-\frac{1}{480}-\frac{1}{400}.
u_{1}=-\frac{11}{2400} u_{2}=-\frac{1}{480} u_{3}=-\frac{1}{2400}
The system is now solved.