\left\{ \begin{array} { l } { 30 x + 60 y = 72 } \\ { 10 x + 30 y = 360 } \end{array} \right.
Solve for x, y
x = -\frac{324}{5} = -64\frac{4}{5} = -64.8
y = \frac{168}{5} = 33\frac{3}{5} = 33.6
Graph
Share
Copied to clipboard
30x+60y=72,10x+30y=360
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
30x+60y=72
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
30x=-60y+72
Subtract 60y from both sides of the equation.
x=\frac{1}{30}\left(-60y+72\right)
Divide both sides by 30.
x=-2y+\frac{12}{5}
Multiply \frac{1}{30} times -60y+72.
10\left(-2y+\frac{12}{5}\right)+30y=360
Substitute -2y+\frac{12}{5} for x in the other equation, 10x+30y=360.
-20y+24+30y=360
Multiply 10 times -2y+\frac{12}{5}.
10y+24=360
Add -20y to 30y.
10y=336
Subtract 24 from both sides of the equation.
y=\frac{168}{5}
Divide both sides by 10.
x=-2\times \frac{168}{5}+\frac{12}{5}
Substitute \frac{168}{5} for y in x=-2y+\frac{12}{5}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-336+12}{5}
Multiply -2 times \frac{168}{5}.
x=-\frac{324}{5}
Add \frac{12}{5} to -\frac{336}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{324}{5},y=\frac{168}{5}
The system is now solved.
30x+60y=72,10x+30y=360
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}30&60\\10&30\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}72\\360\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}30&60\\10&30\end{matrix}\right))\left(\begin{matrix}30&60\\10&30\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}30&60\\10&30\end{matrix}\right))\left(\begin{matrix}72\\360\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}30&60\\10&30\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}30&60\\10&30\end{matrix}\right))\left(\begin{matrix}72\\360\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}30&60\\10&30\end{matrix}\right))\left(\begin{matrix}72\\360\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{30}{30\times 30-60\times 10}&-\frac{60}{30\times 30-60\times 10}\\-\frac{10}{30\times 30-60\times 10}&\frac{30}{30\times 30-60\times 10}\end{matrix}\right)\left(\begin{matrix}72\\360\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&-\frac{1}{5}\\-\frac{1}{30}&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}72\\360\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\times 72-\frac{1}{5}\times 360\\-\frac{1}{30}\times 72+\frac{1}{10}\times 360\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{324}{5}\\\frac{168}{5}\end{matrix}\right)
Do the arithmetic.
x=-\frac{324}{5},y=\frac{168}{5}
Extract the matrix elements x and y.
30x+60y=72,10x+30y=360
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
10\times 30x+10\times 60y=10\times 72,30\times 10x+30\times 30y=30\times 360
To make 30x and 10x equal, multiply all terms on each side of the first equation by 10 and all terms on each side of the second by 30.
300x+600y=720,300x+900y=10800
Simplify.
300x-300x+600y-900y=720-10800
Subtract 300x+900y=10800 from 300x+600y=720 by subtracting like terms on each side of the equal sign.
600y-900y=720-10800
Add 300x to -300x. Terms 300x and -300x cancel out, leaving an equation with only one variable that can be solved.
-300y=720-10800
Add 600y to -900y.
-300y=-10080
Add 720 to -10800.
y=\frac{168}{5}
Divide both sides by -300.
10x+30\times \frac{168}{5}=360
Substitute \frac{168}{5} for y in 10x+30y=360. Because the resulting equation contains only one variable, you can solve for x directly.
10x+1008=360
Multiply 30 times \frac{168}{5}.
10x=-648
Subtract 1008 from both sides of the equation.
x=-\frac{324}{5}
Divide both sides by 10.
x=-\frac{324}{5},y=\frac{168}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}