\left\{ \begin{array} { l } { 30 - ( 8 ) = 2 y + 30 } \\ { 5 x - 29 = x - ( 5 - 4 y ) } \end{array} \right.
Solve for y, x
x=2
y=-4
Graph
Share
Copied to clipboard
22=2y+30
Consider the first equation. Subtract 8 from 30 to get 22.
2y+30=22
Swap sides so that all variable terms are on the left hand side.
2y=22-30
Subtract 30 from both sides.
2y=-8
Subtract 30 from 22 to get -8.
y=\frac{-8}{2}
Divide both sides by 2.
y=-4
Divide -8 by 2 to get -4.
5x-29=x-\left(5-4\left(-4\right)\right)
Consider the second equation. Insert the known values of variables into the equation.
5x-29=x-\left(5+16\right)
Multiply -4 and -4 to get 16.
5x-29=x-21
Add 5 and 16 to get 21.
5x-29-x=-21
Subtract x from both sides.
4x-29=-21
Combine 5x and -x to get 4x.
4x=-21+29
Add 29 to both sides.
4x=8
Add -21 and 29 to get 8.
x=\frac{8}{4}
Divide both sides by 4.
x=2
Divide 8 by 4 to get 2.
y=-4 x=2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}