Skip to main content
Solve for x_1, x_2, x_3
Tick mark Image

Similar Problems from Web Search

Share

x_{1}+2x_{2}+x_{3}=0 -4x_{1}+3x_{2}=-1 3x_{1}-2x_{2}=3
Reorder the equations.
x_{1}=-2x_{2}-x_{3}
Solve x_{1}+2x_{2}+x_{3}=0 for x_{1}.
-4\left(-2x_{2}-x_{3}\right)+3x_{2}=-1 3\left(-2x_{2}-x_{3}\right)-2x_{2}=3
Substitute -2x_{2}-x_{3} for x_{1} in the second and third equation.
x_{2}=-\frac{4}{11}x_{3}-\frac{1}{11} x_{3}=-1-\frac{8}{3}x_{2}
Solve these equations for x_{2} and x_{3} respectively.
x_{3}=-1-\frac{8}{3}\left(-\frac{4}{11}x_{3}-\frac{1}{11}\right)
Substitute -\frac{4}{11}x_{3}-\frac{1}{11} for x_{2} in the equation x_{3}=-1-\frac{8}{3}x_{2}.
x_{3}=-25
Solve x_{3}=-1-\frac{8}{3}\left(-\frac{4}{11}x_{3}-\frac{1}{11}\right) for x_{3}.
x_{2}=-\frac{4}{11}\left(-25\right)-\frac{1}{11}
Substitute -25 for x_{3} in the equation x_{2}=-\frac{4}{11}x_{3}-\frac{1}{11}.
x_{2}=9
Calculate x_{2} from x_{2}=-\frac{4}{11}\left(-25\right)-\frac{1}{11}.
x_{1}=-2\times 9-\left(-25\right)
Substitute 9 for x_{2} and -25 for x_{3} in the equation x_{1}=-2x_{2}-x_{3}.
x_{1}=7
Calculate x_{1} from x_{1}=-2\times 9-\left(-25\right).
x_{1}=7 x_{2}=9 x_{3}=-25
The system is now solved.