\left\{ \begin{array} { l } { 3 x _ { 1 } + 2 x _ { 2 } + 4 x _ { 3 } = - 3 } \\ { 2 x _ { 1 } + 4 x _ { 2 } + x _ { 3 } = 10 } \\ { x _ { 1 } + x _ { 2 } - x _ { 3 } = 9 } \end{array} \right.
Solve for x_1, x_2, x_3
x_{1}=3
x_{2}=2
x_{3}=-4
Share
Copied to clipboard
2x_{1}+4x_{2}+x_{3}=10 3x_{1}+2x_{2}+4x_{3}=-3 x_{1}+x_{2}-x_{3}=9
Reorder the equations.
x_{3}=10-2x_{1}-4x_{2}
Solve 2x_{1}+4x_{2}+x_{3}=10 for x_{3}.
3x_{1}+2x_{2}+4\left(10-2x_{1}-4x_{2}\right)=-3 x_{1}+x_{2}-\left(10-2x_{1}-4x_{2}\right)=9
Substitute 10-2x_{1}-4x_{2} for x_{3} in the second and third equation.
x_{2}=-\frac{5}{14}x_{1}+\frac{43}{14} x_{1}=-\frac{5}{3}x_{2}+\frac{19}{3}
Solve these equations for x_{2} and x_{1} respectively.
x_{1}=-\frac{5}{3}\left(-\frac{5}{14}x_{1}+\frac{43}{14}\right)+\frac{19}{3}
Substitute -\frac{5}{14}x_{1}+\frac{43}{14} for x_{2} in the equation x_{1}=-\frac{5}{3}x_{2}+\frac{19}{3}.
x_{1}=3
Solve x_{1}=-\frac{5}{3}\left(-\frac{5}{14}x_{1}+\frac{43}{14}\right)+\frac{19}{3} for x_{1}.
x_{2}=-\frac{5}{14}\times 3+\frac{43}{14}
Substitute 3 for x_{1} in the equation x_{2}=-\frac{5}{14}x_{1}+\frac{43}{14}.
x_{2}=2
Calculate x_{2} from x_{2}=-\frac{5}{14}\times 3+\frac{43}{14}.
x_{3}=10-2\times 3-4\times 2
Substitute 2 for x_{2} and 3 for x_{1} in the equation x_{3}=10-2x_{1}-4x_{2}.
x_{3}=-4
Calculate x_{3} from x_{3}=10-2\times 3-4\times 2.
x_{1}=3 x_{2}=2 x_{3}=-4
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}