\left\{ \begin{array} { l } { 3 x - y + 2 z = 5 } \\ { 2 y - z = - 3 } \\ { x - 2 y + 3 z = 8 } \end{array} \right.
Solve for x, y, z
x=-\frac{1}{9}\approx -0.111111111
y=-\frac{2}{9}\approx -0.222222222
z = \frac{23}{9} = 2\frac{5}{9} \approx 2.555555556
Share
Copied to clipboard
y=3x+2z-5
Solve 3x-y+2z=5 for y.
2\left(3x+2z-5\right)-z=-3 x-2\left(3x+2z-5\right)+3z=8
Substitute 3x+2z-5 for y in the second and third equation.
x=\frac{7}{6}-\frac{1}{2}z z=-5x+2
Solve these equations for x and z respectively.
z=-5\left(\frac{7}{6}-\frac{1}{2}z\right)+2
Substitute \frac{7}{6}-\frac{1}{2}z for x in the equation z=-5x+2.
z=\frac{23}{9}
Solve z=-5\left(\frac{7}{6}-\frac{1}{2}z\right)+2 for z.
x=\frac{7}{6}-\frac{1}{2}\times \frac{23}{9}
Substitute \frac{23}{9} for z in the equation x=\frac{7}{6}-\frac{1}{2}z.
x=-\frac{1}{9}
Calculate x from x=\frac{7}{6}-\frac{1}{2}\times \frac{23}{9}.
y=3\left(-\frac{1}{9}\right)+2\times \frac{23}{9}-5
Substitute -\frac{1}{9} for x and \frac{23}{9} for z in the equation y=3x+2z-5.
y=-\frac{2}{9}
Calculate y from y=3\left(-\frac{1}{9}\right)+2\times \frac{23}{9}-5.
x=-\frac{1}{9} y=-\frac{2}{9} z=\frac{23}{9}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}