\left\{ \begin{array} { l } { 3 x - 7 y = 24 } \\ { 6 x + 3 y = 99 } \end{array} \right.
Solve for x, y
x=15
y=3
Graph
Share
Copied to clipboard
3x-7y=24,6x+3y=99
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x-7y=24
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=7y+24
Add 7y to both sides of the equation.
x=\frac{1}{3}\left(7y+24\right)
Divide both sides by 3.
x=\frac{7}{3}y+8
Multiply \frac{1}{3} times 7y+24.
6\left(\frac{7}{3}y+8\right)+3y=99
Substitute \frac{7y}{3}+8 for x in the other equation, 6x+3y=99.
14y+48+3y=99
Multiply 6 times \frac{7y}{3}+8.
17y+48=99
Add 14y to 3y.
17y=51
Subtract 48 from both sides of the equation.
y=3
Divide both sides by 17.
x=\frac{7}{3}\times 3+8
Substitute 3 for y in x=\frac{7}{3}y+8. Because the resulting equation contains only one variable, you can solve for x directly.
x=7+8
Multiply \frac{7}{3} times 3.
x=15
Add 8 to 7.
x=15,y=3
The system is now solved.
3x-7y=24,6x+3y=99
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&-7\\6&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}24\\99\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&-7\\6&3\end{matrix}\right))\left(\begin{matrix}3&-7\\6&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-7\\6&3\end{matrix}\right))\left(\begin{matrix}24\\99\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&-7\\6&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-7\\6&3\end{matrix}\right))\left(\begin{matrix}24\\99\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-7\\6&3\end{matrix}\right))\left(\begin{matrix}24\\99\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-\left(-7\times 6\right)}&-\frac{-7}{3\times 3-\left(-7\times 6\right)}\\-\frac{6}{3\times 3-\left(-7\times 6\right)}&\frac{3}{3\times 3-\left(-7\times 6\right)}\end{matrix}\right)\left(\begin{matrix}24\\99\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}&\frac{7}{51}\\-\frac{2}{17}&\frac{1}{17}\end{matrix}\right)\left(\begin{matrix}24\\99\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}\times 24+\frac{7}{51}\times 99\\-\frac{2}{17}\times 24+\frac{1}{17}\times 99\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\3\end{matrix}\right)
Do the arithmetic.
x=15,y=3
Extract the matrix elements x and y.
3x-7y=24,6x+3y=99
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
6\times 3x+6\left(-7\right)y=6\times 24,3\times 6x+3\times 3y=3\times 99
To make 3x and 6x equal, multiply all terms on each side of the first equation by 6 and all terms on each side of the second by 3.
18x-42y=144,18x+9y=297
Simplify.
18x-18x-42y-9y=144-297
Subtract 18x+9y=297 from 18x-42y=144 by subtracting like terms on each side of the equal sign.
-42y-9y=144-297
Add 18x to -18x. Terms 18x and -18x cancel out, leaving an equation with only one variable that can be solved.
-51y=144-297
Add -42y to -9y.
-51y=-153
Add 144 to -297.
y=3
Divide both sides by -51.
6x+3\times 3=99
Substitute 3 for y in 6x+3y=99. Because the resulting equation contains only one variable, you can solve for x directly.
6x+9=99
Multiply 3 times 3.
6x=90
Subtract 9 from both sides of the equation.
x=15
Divide both sides by 6.
x=15,y=3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}