Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x-2\left(y-1\right)=110,\frac{1}{4}x+\frac{1}{3}y=3
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x-2\left(y-1\right)=110
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x-2y+2=110
Multiply -2 times y-1.
3x-2y=108
Subtract 2 from both sides of the equation.
3x=2y+108
Add 2y to both sides of the equation.
x=\frac{1}{3}\left(2y+108\right)
Divide both sides by 3.
x=\frac{2}{3}y+36
Multiply \frac{1}{3} times 108+2y.
\frac{1}{4}\left(\frac{2}{3}y+36\right)+\frac{1}{3}y=3
Substitute \frac{2y}{3}+36 for x in the other equation, \frac{1}{4}x+\frac{1}{3}y=3.
\frac{1}{6}y+9+\frac{1}{3}y=3
Multiply \frac{1}{4} times \frac{2y}{3}+36.
\frac{1}{2}y+9=3
Add \frac{y}{6} to \frac{y}{3}.
\frac{1}{2}y=-6
Subtract 9 from both sides of the equation.
y=-12
Multiply both sides by 2.
x=\frac{2}{3}\left(-12\right)+36
Substitute -12 for y in x=\frac{2}{3}y+36. Because the resulting equation contains only one variable, you can solve for x directly.
x=-8+36
Multiply \frac{2}{3} times -12.
x=28
Add 36 to -8.
x=28,y=-12
The system is now solved.
3x-2\left(y-1\right)=110,\frac{1}{4}x+\frac{1}{3}y=3
Put the equations in standard form and then use matrices to solve the system of equations.
3x-2\left(y-1\right)=110
Simplify the first equation to put it in standard form.
3x-2y+2=110
Multiply -2 times y-1.
3x-2y=108
Subtract 2 from both sides of the equation.
\left(\begin{matrix}3&-2\\\frac{1}{4}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}108\\3\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&-2\\\frac{1}{4}&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}3&-2\\\frac{1}{4}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\\frac{1}{4}&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}108\\3\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&-2\\\frac{1}{4}&\frac{1}{3}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\\frac{1}{4}&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}108\\3\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\\frac{1}{4}&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}108\\3\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{3}}{3\times \frac{1}{3}-\left(-2\times \frac{1}{4}\right)}&-\frac{-2}{3\times \frac{1}{3}-\left(-2\times \frac{1}{4}\right)}\\-\frac{\frac{1}{4}}{3\times \frac{1}{3}-\left(-2\times \frac{1}{4}\right)}&\frac{3}{3\times \frac{1}{3}-\left(-2\times \frac{1}{4}\right)}\end{matrix}\right)\left(\begin{matrix}108\\3\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{9}&\frac{4}{3}\\-\frac{1}{6}&2\end{matrix}\right)\left(\begin{matrix}108\\3\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{9}\times 108+\frac{4}{3}\times 3\\-\frac{1}{6}\times 108+2\times 3\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}28\\-12\end{matrix}\right)
Do the arithmetic.
x=28,y=-12
Extract the matrix elements x and y.