\left\{ \begin{array} { l } { 3 x + y = 5 } \\ { \frac { x + 2 } { 5 } + \frac { y } { 2 } = - 1 } \end{array} \right.
Solve for x, y
x=3
y=-4
Graph
Share
Copied to clipboard
3x+y=5,\frac{1}{5}\left(x+2\right)+\frac{1}{2}y=-1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+y=5
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=-y+5
Subtract y from both sides of the equation.
x=\frac{1}{3}\left(-y+5\right)
Divide both sides by 3.
x=-\frac{1}{3}y+\frac{5}{3}
Multiply \frac{1}{3} times -y+5.
\frac{1}{5}\left(-\frac{1}{3}y+\frac{5}{3}+2\right)+\frac{1}{2}y=-1
Substitute \frac{-y+5}{3} for x in the other equation, \frac{1}{5}\left(x+2\right)+\frac{1}{2}y=-1.
\frac{1}{5}\left(-\frac{1}{3}y+\frac{11}{3}\right)+\frac{1}{2}y=-1
Add \frac{5}{3} to 2.
-\frac{1}{15}y+\frac{11}{15}+\frac{1}{2}y=-1
Multiply \frac{1}{5} times \frac{-y+11}{3}.
\frac{13}{30}y+\frac{11}{15}=-1
Add -\frac{y}{15} to \frac{y}{2}.
\frac{13}{30}y=-\frac{26}{15}
Subtract \frac{11}{15} from both sides of the equation.
y=-4
Divide both sides of the equation by \frac{13}{30}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{1}{3}\left(-4\right)+\frac{5}{3}
Substitute -4 for y in x=-\frac{1}{3}y+\frac{5}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{4+5}{3}
Multiply -\frac{1}{3} times -4.
x=3
Add \frac{5}{3} to \frac{4}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=3,y=-4
The system is now solved.
3x+y=5,\frac{1}{5}\left(x+2\right)+\frac{1}{2}y=-1
Put the equations in standard form and then use matrices to solve the system of equations.
\frac{1}{5}\left(x+2\right)+\frac{1}{2}y=-1
Simplify the second equation to put it in standard form.
\frac{1}{5}x+\frac{2}{5}+\frac{1}{2}y=-1
Multiply \frac{1}{5} times x+2.
\frac{1}{5}x+\frac{1}{2}y=-\frac{7}{5}
Subtract \frac{2}{5} from both sides of the equation.
\left(\begin{matrix}3&1\\\frac{1}{5}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-\frac{7}{5}\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&1\\\frac{1}{5}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}3&1\\\frac{1}{5}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\\frac{1}{5}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}5\\-\frac{7}{5}\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&1\\\frac{1}{5}&\frac{1}{2}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\\frac{1}{5}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}5\\-\frac{7}{5}\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\\frac{1}{5}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}5\\-\frac{7}{5}\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{2}}{3\times \frac{1}{2}-\frac{1}{5}}&-\frac{1}{3\times \frac{1}{2}-\frac{1}{5}}\\-\frac{\frac{1}{5}}{3\times \frac{1}{2}-\frac{1}{5}}&\frac{3}{3\times \frac{1}{2}-\frac{1}{5}}\end{matrix}\right)\left(\begin{matrix}5\\-\frac{7}{5}\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{13}&-\frac{10}{13}\\-\frac{2}{13}&\frac{30}{13}\end{matrix}\right)\left(\begin{matrix}5\\-\frac{7}{5}\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{13}\times 5-\frac{10}{13}\left(-\frac{7}{5}\right)\\-\frac{2}{13}\times 5+\frac{30}{13}\left(-\frac{7}{5}\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-4\end{matrix}\right)
Do the arithmetic.
x=3,y=-4
Extract the matrix elements x and y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}