\left\{ \begin{array} { l } { 3 x + 7 y + z = 0 } \\ { x + 5 y + z = 10 } \\ { x + 6 y - 2 z = 7 } \end{array} \right.
Solve for x, y, z
x = -\frac{107}{13} = -8\frac{3}{13} \approx -8.230769231
y = \frac{42}{13} = 3\frac{3}{13} \approx 3.230769231
z = \frac{27}{13} = 2\frac{1}{13} \approx 2.076923077
Share
Copied to clipboard
z=-3x-7y
Solve 3x+7y+z=0 for z.
x+5y-3x-7y=10 x+6y-2\left(-3x-7y\right)=7
Substitute -3x-7y for z in the second and third equation.
y=-5-x x=-\frac{20}{7}y+1
Solve these equations for y and x respectively.
x=-\frac{20}{7}\left(-5-x\right)+1
Substitute -5-x for y in the equation x=-\frac{20}{7}y+1.
x=-\frac{107}{13}
Solve x=-\frac{20}{7}\left(-5-x\right)+1 for x.
y=-5-\left(-\frac{107}{13}\right)
Substitute -\frac{107}{13} for x in the equation y=-5-x.
y=\frac{42}{13}
Calculate y from y=-5-\left(-\frac{107}{13}\right).
z=-3\left(-\frac{107}{13}\right)-7\times \frac{42}{13}
Substitute \frac{42}{13} for y and -\frac{107}{13} for x in the equation z=-3x-7y.
z=\frac{27}{13}
Calculate z from z=-3\left(-\frac{107}{13}\right)-7\times \frac{42}{13}.
x=-\frac{107}{13} y=\frac{42}{13} z=\frac{27}{13}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}