\left\{ \begin{array} { l } { 3 x + 4 y - 8 = 0 } \\ { 4 y + 12 = 0 } \end{array} \right.
Solve for x, y
x = \frac{20}{3} = 6\frac{2}{3} \approx 6.666666667
y=-3
Graph
Share
Copied to clipboard
4y=-12
Consider the second equation. Subtract 12 from both sides. Anything subtracted from zero gives its negation.
y=\frac{-12}{4}
Divide both sides by 4.
y=-3
Divide -12 by 4 to get -3.
3x+4\left(-3\right)-8=0
Consider the first equation. Insert the known values of variables into the equation.
3x-12-8=0
Multiply 4 and -3 to get -12.
3x-20=0
Subtract 8 from -12 to get -20.
3x=20
Add 20 to both sides. Anything plus zero gives itself.
x=\frac{20}{3}
Divide both sides by 3.
x=\frac{20}{3} y=-3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}