Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x-9y=0
Consider the second equation. Subtract 9y from both sides.
3x+3y=600,6x-9y=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+3y=600
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=-3y+600
Subtract 3y from both sides of the equation.
x=\frac{1}{3}\left(-3y+600\right)
Divide both sides by 3.
x=-y+200
Multiply \frac{1}{3} times -3y+600.
6\left(-y+200\right)-9y=0
Substitute -y+200 for x in the other equation, 6x-9y=0.
-6y+1200-9y=0
Multiply 6 times -y+200.
-15y+1200=0
Add -6y to -9y.
-15y=-1200
Subtract 1200 from both sides of the equation.
y=80
Divide both sides by -15.
x=-80+200
Substitute 80 for y in x=-y+200. Because the resulting equation contains only one variable, you can solve for x directly.
x=120
Add 200 to -80.
x=120,y=80
The system is now solved.
6x-9y=0
Consider the second equation. Subtract 9y from both sides.
3x+3y=600,6x-9y=0
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&3\\6&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}600\\0\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&3\\6&-9\end{matrix}\right))\left(\begin{matrix}3&3\\6&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&3\\6&-9\end{matrix}\right))\left(\begin{matrix}600\\0\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&3\\6&-9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&3\\6&-9\end{matrix}\right))\left(\begin{matrix}600\\0\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&3\\6&-9\end{matrix}\right))\left(\begin{matrix}600\\0\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{3\left(-9\right)-3\times 6}&-\frac{3}{3\left(-9\right)-3\times 6}\\-\frac{6}{3\left(-9\right)-3\times 6}&\frac{3}{3\left(-9\right)-3\times 6}\end{matrix}\right)\left(\begin{matrix}600\\0\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{15}\\\frac{2}{15}&-\frac{1}{15}\end{matrix}\right)\left(\begin{matrix}600\\0\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 600\\\frac{2}{15}\times 600\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}120\\80\end{matrix}\right)
Do the arithmetic.
x=120,y=80
Extract the matrix elements x and y.
6x-9y=0
Consider the second equation. Subtract 9y from both sides.
3x+3y=600,6x-9y=0
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
6\times 3x+6\times 3y=6\times 600,3\times 6x+3\left(-9\right)y=0
To make 3x and 6x equal, multiply all terms on each side of the first equation by 6 and all terms on each side of the second by 3.
18x+18y=3600,18x-27y=0
Simplify.
18x-18x+18y+27y=3600
Subtract 18x-27y=0 from 18x+18y=3600 by subtracting like terms on each side of the equal sign.
18y+27y=3600
Add 18x to -18x. Terms 18x and -18x cancel out, leaving an equation with only one variable that can be solved.
45y=3600
Add 18y to 27y.
y=80
Divide both sides by 45.
6x-9\times 80=0
Substitute 80 for y in 6x-9y=0. Because the resulting equation contains only one variable, you can solve for x directly.
6x-720=0
Multiply -9 times 80.
6x=720
Add 720 to both sides of the equation.
x=120
Divide both sides by 6.
x=120,y=80
The system is now solved.