\left\{ \begin{array} { l } { 3 x + 20 y = 1150 } \\ { 20 x - 20 y = 100 } \end{array} \right.
Solve for x, y
x = \frac{1250}{23} = 54\frac{8}{23} \approx 54.347826087
y = \frac{1135}{23} = 49\frac{8}{23} \approx 49.347826087
Graph
Share
Copied to clipboard
3x+20y=1150,20x-20y=100
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+20y=1150
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=-20y+1150
Subtract 20y from both sides of the equation.
x=\frac{1}{3}\left(-20y+1150\right)
Divide both sides by 3.
x=-\frac{20}{3}y+\frac{1150}{3}
Multiply \frac{1}{3} times -20y+1150.
20\left(-\frac{20}{3}y+\frac{1150}{3}\right)-20y=100
Substitute \frac{-20y+1150}{3} for x in the other equation, 20x-20y=100.
-\frac{400}{3}y+\frac{23000}{3}-20y=100
Multiply 20 times \frac{-20y+1150}{3}.
-\frac{460}{3}y+\frac{23000}{3}=100
Add -\frac{400y}{3} to -20y.
-\frac{460}{3}y=-\frac{22700}{3}
Subtract \frac{23000}{3} from both sides of the equation.
y=\frac{1135}{23}
Divide both sides of the equation by -\frac{460}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{20}{3}\times \frac{1135}{23}+\frac{1150}{3}
Substitute \frac{1135}{23} for y in x=-\frac{20}{3}y+\frac{1150}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{22700}{69}+\frac{1150}{3}
Multiply -\frac{20}{3} times \frac{1135}{23} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{1250}{23}
Add \frac{1150}{3} to -\frac{22700}{69} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{1250}{23},y=\frac{1135}{23}
The system is now solved.
3x+20y=1150,20x-20y=100
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&20\\20&-20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1150\\100\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&20\\20&-20\end{matrix}\right))\left(\begin{matrix}3&20\\20&-20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&20\\20&-20\end{matrix}\right))\left(\begin{matrix}1150\\100\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&20\\20&-20\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&20\\20&-20\end{matrix}\right))\left(\begin{matrix}1150\\100\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&20\\20&-20\end{matrix}\right))\left(\begin{matrix}1150\\100\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{20}{3\left(-20\right)-20\times 20}&-\frac{20}{3\left(-20\right)-20\times 20}\\-\frac{20}{3\left(-20\right)-20\times 20}&\frac{3}{3\left(-20\right)-20\times 20}\end{matrix}\right)\left(\begin{matrix}1150\\100\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{23}&\frac{1}{23}\\\frac{1}{23}&-\frac{3}{460}\end{matrix}\right)\left(\begin{matrix}1150\\100\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{23}\times 1150+\frac{1}{23}\times 100\\\frac{1}{23}\times 1150-\frac{3}{460}\times 100\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1250}{23}\\\frac{1135}{23}\end{matrix}\right)
Do the arithmetic.
x=\frac{1250}{23},y=\frac{1135}{23}
Extract the matrix elements x and y.
3x+20y=1150,20x-20y=100
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
20\times 3x+20\times 20y=20\times 1150,3\times 20x+3\left(-20\right)y=3\times 100
To make 3x and 20x equal, multiply all terms on each side of the first equation by 20 and all terms on each side of the second by 3.
60x+400y=23000,60x-60y=300
Simplify.
60x-60x+400y+60y=23000-300
Subtract 60x-60y=300 from 60x+400y=23000 by subtracting like terms on each side of the equal sign.
400y+60y=23000-300
Add 60x to -60x. Terms 60x and -60x cancel out, leaving an equation with only one variable that can be solved.
460y=23000-300
Add 400y to 60y.
460y=22700
Add 23000 to -300.
y=\frac{1135}{23}
Divide both sides by 460.
20x-20\times \frac{1135}{23}=100
Substitute \frac{1135}{23} for y in 20x-20y=100. Because the resulting equation contains only one variable, you can solve for x directly.
20x-\frac{22700}{23}=100
Multiply -20 times \frac{1135}{23}.
20x=\frac{25000}{23}
Add \frac{22700}{23} to both sides of the equation.
x=\frac{1250}{23}
Divide both sides by 20.
x=\frac{1250}{23},y=\frac{1135}{23}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}