Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x+2y=98,8x+3y=158
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+2y=98
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=-2y+98
Subtract 2y from both sides of the equation.
x=\frac{1}{3}\left(-2y+98\right)
Divide both sides by 3.
x=-\frac{2}{3}y+\frac{98}{3}
Multiply \frac{1}{3} times -2y+98.
8\left(-\frac{2}{3}y+\frac{98}{3}\right)+3y=158
Substitute \frac{-2y+98}{3} for x in the other equation, 8x+3y=158.
-\frac{16}{3}y+\frac{784}{3}+3y=158
Multiply 8 times \frac{-2y+98}{3}.
-\frac{7}{3}y+\frac{784}{3}=158
Add -\frac{16y}{3} to 3y.
-\frac{7}{3}y=-\frac{310}{3}
Subtract \frac{784}{3} from both sides of the equation.
y=\frac{310}{7}
Divide both sides of the equation by -\frac{7}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{2}{3}\times \frac{310}{7}+\frac{98}{3}
Substitute \frac{310}{7} for y in x=-\frac{2}{3}y+\frac{98}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{620}{21}+\frac{98}{3}
Multiply -\frac{2}{3} times \frac{310}{7} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{22}{7}
Add \frac{98}{3} to -\frac{620}{21} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{22}{7},y=\frac{310}{7}
The system is now solved.
3x+2y=98,8x+3y=158
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&2\\8&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}98\\158\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&2\\8&3\end{matrix}\right))\left(\begin{matrix}3&2\\8&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\8&3\end{matrix}\right))\left(\begin{matrix}98\\158\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&2\\8&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\8&3\end{matrix}\right))\left(\begin{matrix}98\\158\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\8&3\end{matrix}\right))\left(\begin{matrix}98\\158\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-2\times 8}&-\frac{2}{3\times 3-2\times 8}\\-\frac{8}{3\times 3-2\times 8}&\frac{3}{3\times 3-2\times 8}\end{matrix}\right)\left(\begin{matrix}98\\158\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{7}&\frac{2}{7}\\\frac{8}{7}&-\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}98\\158\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{7}\times 98+\frac{2}{7}\times 158\\\frac{8}{7}\times 98-\frac{3}{7}\times 158\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{22}{7}\\\frac{310}{7}\end{matrix}\right)
Do the arithmetic.
x=\frac{22}{7},y=\frac{310}{7}
Extract the matrix elements x and y.
3x+2y=98,8x+3y=158
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
8\times 3x+8\times 2y=8\times 98,3\times 8x+3\times 3y=3\times 158
To make 3x and 8x equal, multiply all terms on each side of the first equation by 8 and all terms on each side of the second by 3.
24x+16y=784,24x+9y=474
Simplify.
24x-24x+16y-9y=784-474
Subtract 24x+9y=474 from 24x+16y=784 by subtracting like terms on each side of the equal sign.
16y-9y=784-474
Add 24x to -24x. Terms 24x and -24x cancel out, leaving an equation with only one variable that can be solved.
7y=784-474
Add 16y to -9y.
7y=310
Add 784 to -474.
y=\frac{310}{7}
Divide both sides by 7.
8x+3\times \frac{310}{7}=158
Substitute \frac{310}{7} for y in 8x+3y=158. Because the resulting equation contains only one variable, you can solve for x directly.
8x+\frac{930}{7}=158
Multiply 3 times \frac{310}{7}.
8x=\frac{176}{7}
Subtract \frac{930}{7} from both sides of the equation.
x=\frac{22}{7}
Divide both sides by 8.
x=\frac{22}{7},y=\frac{310}{7}
The system is now solved.