\left\{ \begin{array} { l } { 3 x + 2 y = 180 } \\ { 5 x + 4 y = 620 } \end{array} \right.
Solve for x, y
x=-260
y=480
Graph
Share
Copied to clipboard
3x+2y=180,5x+4y=620
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+2y=180
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=-2y+180
Subtract 2y from both sides of the equation.
x=\frac{1}{3}\left(-2y+180\right)
Divide both sides by 3.
x=-\frac{2}{3}y+60
Multiply \frac{1}{3} times -2y+180.
5\left(-\frac{2}{3}y+60\right)+4y=620
Substitute -\frac{2y}{3}+60 for x in the other equation, 5x+4y=620.
-\frac{10}{3}y+300+4y=620
Multiply 5 times -\frac{2y}{3}+60.
\frac{2}{3}y+300=620
Add -\frac{10y}{3} to 4y.
\frac{2}{3}y=320
Subtract 300 from both sides of the equation.
y=480
Divide both sides of the equation by \frac{2}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{2}{3}\times 480+60
Substitute 480 for y in x=-\frac{2}{3}y+60. Because the resulting equation contains only one variable, you can solve for x directly.
x=-320+60
Multiply -\frac{2}{3} times 480.
x=-260
Add 60 to -320.
x=-260,y=480
The system is now solved.
3x+2y=180,5x+4y=620
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&2\\5&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}180\\620\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&2\\5&4\end{matrix}\right))\left(\begin{matrix}3&2\\5&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\5&4\end{matrix}\right))\left(\begin{matrix}180\\620\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&2\\5&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\5&4\end{matrix}\right))\left(\begin{matrix}180\\620\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\5&4\end{matrix}\right))\left(\begin{matrix}180\\620\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3\times 4-2\times 5}&-\frac{2}{3\times 4-2\times 5}\\-\frac{5}{3\times 4-2\times 5}&\frac{3}{3\times 4-2\times 5}\end{matrix}\right)\left(\begin{matrix}180\\620\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-1\\-\frac{5}{2}&\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}180\\620\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 180-620\\-\frac{5}{2}\times 180+\frac{3}{2}\times 620\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-260\\480\end{matrix}\right)
Do the arithmetic.
x=-260,y=480
Extract the matrix elements x and y.
3x+2y=180,5x+4y=620
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
5\times 3x+5\times 2y=5\times 180,3\times 5x+3\times 4y=3\times 620
To make 3x and 5x equal, multiply all terms on each side of the first equation by 5 and all terms on each side of the second by 3.
15x+10y=900,15x+12y=1860
Simplify.
15x-15x+10y-12y=900-1860
Subtract 15x+12y=1860 from 15x+10y=900 by subtracting like terms on each side of the equal sign.
10y-12y=900-1860
Add 15x to -15x. Terms 15x and -15x cancel out, leaving an equation with only one variable that can be solved.
-2y=900-1860
Add 10y to -12y.
-2y=-960
Add 900 to -1860.
y=480
Divide both sides by -2.
5x+4\times 480=620
Substitute 480 for y in 5x+4y=620. Because the resulting equation contains only one variable, you can solve for x directly.
5x+1920=620
Multiply 4 times 480.
5x=-1300
Subtract 1920 from both sides of the equation.
x=-260
Divide both sides by 5.
x=-260,y=480
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}