\left\{ \begin{array} { l } { 3 x + 2 y = 1 } \\ { 3 x ^ { 2 } - y ^ { 2 } = - 4 } \end{array} \right.
Solve for x, y (complex solution)
x=-1+2i\text{, }y=2-3i
x=-1-2i\text{, }y=2+3i
Graph
Share
Copied to clipboard
3x+2y=1
Solve 3x+2y=1 for x by isolating x on the left hand side of the equal sign.
3x=-2y+1
Subtract 2y from both sides of the equation.
x=-\frac{2}{3}y+\frac{1}{3}
Divide both sides by 3.
-y^{2}+3\left(-\frac{2}{3}y+\frac{1}{3}\right)^{2}=-4
Substitute -\frac{2}{3}y+\frac{1}{3} for x in the other equation, -y^{2}+3x^{2}=-4.
-y^{2}+3\left(\frac{4}{9}y^{2}-\frac{4}{9}y+\frac{1}{9}\right)=-4
Square -\frac{2}{3}y+\frac{1}{3}.
-y^{2}+\frac{4}{3}y^{2}-\frac{4}{3}y+\frac{1}{3}=-4
Multiply 3 times \frac{4}{9}y^{2}-\frac{4}{9}y+\frac{1}{9}.
\frac{1}{3}y^{2}-\frac{4}{3}y+\frac{1}{3}=-4
Add -y^{2} to \frac{4}{3}y^{2}.
\frac{1}{3}y^{2}-\frac{4}{3}y+\frac{13}{3}=0
Add 4 to both sides of the equation.
y=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\left(-\frac{4}{3}\right)^{2}-4\times \frac{1}{3}\times \frac{13}{3}}}{2\times \frac{1}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1+3\left(-\frac{2}{3}\right)^{2} for a, 3\times \frac{1}{3}\left(-\frac{2}{3}\right)\times 2 for b, and \frac{13}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{16}{9}-4\times \frac{1}{3}\times \frac{13}{3}}}{2\times \frac{1}{3}}
Square 3\times \frac{1}{3}\left(-\frac{2}{3}\right)\times 2.
y=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{16}{9}-\frac{4}{3}\times \frac{13}{3}}}{2\times \frac{1}{3}}
Multiply -4 times -1+3\left(-\frac{2}{3}\right)^{2}.
y=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{16-52}{9}}}{2\times \frac{1}{3}}
Multiply -\frac{4}{3} times \frac{13}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=\frac{-\left(-\frac{4}{3}\right)±\sqrt{-4}}{2\times \frac{1}{3}}
Add \frac{16}{9} to -\frac{52}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{-\left(-\frac{4}{3}\right)±2i}{2\times \frac{1}{3}}
Take the square root of -4.
y=\frac{\frac{4}{3}±2i}{2\times \frac{1}{3}}
The opposite of 3\times \frac{1}{3}\left(-\frac{2}{3}\right)\times 2 is \frac{4}{3}.
y=\frac{\frac{4}{3}±2i}{\frac{2}{3}}
Multiply 2 times -1+3\left(-\frac{2}{3}\right)^{2}.
y=\frac{\frac{4}{3}+2i}{\frac{2}{3}}
Now solve the equation y=\frac{\frac{4}{3}±2i}{\frac{2}{3}} when ± is plus. Add \frac{4}{3} to 2i.
y=2+3i
Divide \frac{4}{3}+2i by \frac{2}{3} by multiplying \frac{4}{3}+2i by the reciprocal of \frac{2}{3}.
y=\frac{\frac{4}{3}-2i}{\frac{2}{3}}
Now solve the equation y=\frac{\frac{4}{3}±2i}{\frac{2}{3}} when ± is minus. Subtract 2i from \frac{4}{3}.
y=2-3i
Divide \frac{4}{3}-2i by \frac{2}{3} by multiplying \frac{4}{3}-2i by the reciprocal of \frac{2}{3}.
x=-\frac{2}{3}\left(2+3i\right)+\frac{1}{3}
There are two solutions for y: 2+3i and 2-3i. Substitute 2+3i for y in the equation x=-\frac{2}{3}y+\frac{1}{3} to find the corresponding solution for x that satisfies both equations.
x=-\frac{4}{3}-2i+\frac{1}{3}
Multiply -\frac{2}{3} times 2+3i.
x=-1-2i
Add -\frac{2}{3}\left(2+3i\right) to \frac{1}{3}.
x=-\frac{2}{3}\left(2-3i\right)+\frac{1}{3}
Now substitute 2-3i for y in the equation x=-\frac{2}{3}y+\frac{1}{3} and solve to find the corresponding solution for x that satisfies both equations.
x=-\frac{4}{3}+2i+\frac{1}{3}
Multiply -\frac{2}{3} times 2-3i.
x=-1+2i
Add -\frac{2}{3}\left(2-3i\right) to \frac{1}{3}.
x=-1-2i,y=2+3i\text{ or }x=-1+2i,y=2-3i
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}