\left\{ \begin{array} { l } { 28 x + 9 y = 492 } \\ { 6 x + 25 y = 110 } \end{array} \right.
Solve for x, y
x = \frac{5655}{323} = 17\frac{164}{323} \approx 17.507739938
y=\frac{64}{323}\approx 0.198142415
Graph
Share
Copied to clipboard
28x+9y=492,6x+25y=110
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
28x+9y=492
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
28x=-9y+492
Subtract 9y from both sides of the equation.
x=\frac{1}{28}\left(-9y+492\right)
Divide both sides by 28.
x=-\frac{9}{28}y+\frac{123}{7}
Multiply \frac{1}{28} times -9y+492.
6\left(-\frac{9}{28}y+\frac{123}{7}\right)+25y=110
Substitute -\frac{9y}{28}+\frac{123}{7} for x in the other equation, 6x+25y=110.
-\frac{27}{14}y+\frac{738}{7}+25y=110
Multiply 6 times -\frac{9y}{28}+\frac{123}{7}.
\frac{323}{14}y+\frac{738}{7}=110
Add -\frac{27y}{14} to 25y.
\frac{323}{14}y=\frac{32}{7}
Subtract \frac{738}{7} from both sides of the equation.
y=\frac{64}{323}
Divide both sides of the equation by \frac{323}{14}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{9}{28}\times \frac{64}{323}+\frac{123}{7}
Substitute \frac{64}{323} for y in x=-\frac{9}{28}y+\frac{123}{7}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{144}{2261}+\frac{123}{7}
Multiply -\frac{9}{28} times \frac{64}{323} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{5655}{323}
Add \frac{123}{7} to -\frac{144}{2261} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{5655}{323},y=\frac{64}{323}
The system is now solved.
28x+9y=492,6x+25y=110
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}28&9\\6&25\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}492\\110\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}28&9\\6&25\end{matrix}\right))\left(\begin{matrix}28&9\\6&25\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}28&9\\6&25\end{matrix}\right))\left(\begin{matrix}492\\110\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}28&9\\6&25\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}28&9\\6&25\end{matrix}\right))\left(\begin{matrix}492\\110\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}28&9\\6&25\end{matrix}\right))\left(\begin{matrix}492\\110\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{28\times 25-9\times 6}&-\frac{9}{28\times 25-9\times 6}\\-\frac{6}{28\times 25-9\times 6}&\frac{28}{28\times 25-9\times 6}\end{matrix}\right)\left(\begin{matrix}492\\110\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{646}&-\frac{9}{646}\\-\frac{3}{323}&\frac{14}{323}\end{matrix}\right)\left(\begin{matrix}492\\110\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{646}\times 492-\frac{9}{646}\times 110\\-\frac{3}{323}\times 492+\frac{14}{323}\times 110\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5655}{323}\\\frac{64}{323}\end{matrix}\right)
Do the arithmetic.
x=\frac{5655}{323},y=\frac{64}{323}
Extract the matrix elements x and y.
28x+9y=492,6x+25y=110
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
6\times 28x+6\times 9y=6\times 492,28\times 6x+28\times 25y=28\times 110
To make 28x and 6x equal, multiply all terms on each side of the first equation by 6 and all terms on each side of the second by 28.
168x+54y=2952,168x+700y=3080
Simplify.
168x-168x+54y-700y=2952-3080
Subtract 168x+700y=3080 from 168x+54y=2952 by subtracting like terms on each side of the equal sign.
54y-700y=2952-3080
Add 168x to -168x. Terms 168x and -168x cancel out, leaving an equation with only one variable that can be solved.
-646y=2952-3080
Add 54y to -700y.
-646y=-128
Add 2952 to -3080.
y=\frac{64}{323}
Divide both sides by -646.
6x+25\times \frac{64}{323}=110
Substitute \frac{64}{323} for y in 6x+25y=110. Because the resulting equation contains only one variable, you can solve for x directly.
6x+\frac{1600}{323}=110
Multiply 25 times \frac{64}{323}.
6x=\frac{33930}{323}
Subtract \frac{1600}{323} from both sides of the equation.
x=\frac{5655}{323}
Divide both sides by 6.
x=\frac{5655}{323},y=\frac{64}{323}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}