\left\{ \begin{array} { l } { 2400 = 12 k + b } \\ { 0 = 22 k + b } \end{array} \right.
Solve for k, b
k=-240
b=5280
Share
Copied to clipboard
12k+b=2400
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
22k+b=0
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
12k+b=2400,22k+b=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
12k+b=2400
Choose one of the equations and solve it for k by isolating k on the left hand side of the equal sign.
12k=-b+2400
Subtract b from both sides of the equation.
k=\frac{1}{12}\left(-b+2400\right)
Divide both sides by 12.
k=-\frac{1}{12}b+200
Multiply \frac{1}{12} times -b+2400.
22\left(-\frac{1}{12}b+200\right)+b=0
Substitute -\frac{b}{12}+200 for k in the other equation, 22k+b=0.
-\frac{11}{6}b+4400+b=0
Multiply 22 times -\frac{b}{12}+200.
-\frac{5}{6}b+4400=0
Add -\frac{11b}{6} to b.
-\frac{5}{6}b=-4400
Subtract 4400 from both sides of the equation.
b=5280
Divide both sides of the equation by -\frac{5}{6}, which is the same as multiplying both sides by the reciprocal of the fraction.
k=-\frac{1}{12}\times 5280+200
Substitute 5280 for b in k=-\frac{1}{12}b+200. Because the resulting equation contains only one variable, you can solve for k directly.
k=-440+200
Multiply -\frac{1}{12} times 5280.
k=-240
Add 200 to -440.
k=-240,b=5280
The system is now solved.
12k+b=2400
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
22k+b=0
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
12k+b=2400,22k+b=0
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}12&1\\22&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}2400\\0\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}12&1\\22&1\end{matrix}\right))\left(\begin{matrix}12&1\\22&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}12&1\\22&1\end{matrix}\right))\left(\begin{matrix}2400\\0\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}12&1\\22&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}12&1\\22&1\end{matrix}\right))\left(\begin{matrix}2400\\0\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}12&1\\22&1\end{matrix}\right))\left(\begin{matrix}2400\\0\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12-22}&-\frac{1}{12-22}\\-\frac{22}{12-22}&\frac{12}{12-22}\end{matrix}\right)\left(\begin{matrix}2400\\0\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{10}&\frac{1}{10}\\\frac{11}{5}&-\frac{6}{5}\end{matrix}\right)\left(\begin{matrix}2400\\0\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{10}\times 2400\\\frac{11}{5}\times 2400\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-240\\5280\end{matrix}\right)
Do the arithmetic.
k=-240,b=5280
Extract the matrix elements k and b.
12k+b=2400
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
22k+b=0
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
12k+b=2400,22k+b=0
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
12k-22k+b-b=2400
Subtract 22k+b=0 from 12k+b=2400 by subtracting like terms on each side of the equal sign.
12k-22k=2400
Add b to -b. Terms b and -b cancel out, leaving an equation with only one variable that can be solved.
-10k=2400
Add 12k to -22k.
k=-240
Divide both sides by -10.
22\left(-240\right)+b=0
Substitute -240 for k in 22k+b=0. Because the resulting equation contains only one variable, you can solve for b directly.
-5280+b=0
Multiply 22 times -240.
b=5280
Add 5280 to both sides of the equation.
k=-240,b=5280
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}