\left\{ \begin{array} { l } { 200 = a + b + c } \\ { 150 = \frac { a } { 4 } + \frac { 1 } { 2 } b + c } \\ { 150 = \frac { 9 } { 4 } a + \frac { 3 } { 2 } b + c } \end{array} \right.
Solve for a, b, c
a=-200
b=400
c=0
Share
Copied to clipboard
200=a+b+c 600=a+2b+4c 600=9a+6b+4c
Multiply each equation by the least common multiple of denominators in it. Simplify.
a=-b+200-c
Solve 200=a+b+c for a.
600=-b+200-c+2b+4c 600=9\left(-b+200-c\right)+6b+4c
Substitute -b+200-c for a in the second and third equation.
b=-3c+400 c=240-\frac{3}{5}b
Solve these equations for b and c respectively.
c=240-\frac{3}{5}\left(-3c+400\right)
Substitute -3c+400 for b in the equation c=240-\frac{3}{5}b.
c=0
Solve c=240-\frac{3}{5}\left(-3c+400\right) for c.
b=-3\times 0+400
Substitute 0 for c in the equation b=-3c+400.
b=400
Calculate b from b=-3\times 0+400.
a=-400+200-0
Substitute 400 for b and 0 for c in the equation a=-b+200-c.
a=-200
Calculate a from a=-400+200-0.
a=-200 b=400 c=0
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}