\left\{ \begin{array} { l } { 200 = 10 k + b } \\ { 150 = 15 k + b } \end{array} \right.
Solve for k, b
k=-10
b=300
Share
Copied to clipboard
10k+b=200
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
15k+b=150
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
10k+b=200,15k+b=150
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
10k+b=200
Choose one of the equations and solve it for k by isolating k on the left hand side of the equal sign.
10k=-b+200
Subtract b from both sides of the equation.
k=\frac{1}{10}\left(-b+200\right)
Divide both sides by 10.
k=-\frac{1}{10}b+20
Multiply \frac{1}{10} times -b+200.
15\left(-\frac{1}{10}b+20\right)+b=150
Substitute -\frac{b}{10}+20 for k in the other equation, 15k+b=150.
-\frac{3}{2}b+300+b=150
Multiply 15 times -\frac{b}{10}+20.
-\frac{1}{2}b+300=150
Add -\frac{3b}{2} to b.
-\frac{1}{2}b=-150
Subtract 300 from both sides of the equation.
b=300
Multiply both sides by -2.
k=-\frac{1}{10}\times 300+20
Substitute 300 for b in k=-\frac{1}{10}b+20. Because the resulting equation contains only one variable, you can solve for k directly.
k=-30+20
Multiply -\frac{1}{10} times 300.
k=-10
Add 20 to -30.
k=-10,b=300
The system is now solved.
10k+b=200
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
15k+b=150
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
10k+b=200,15k+b=150
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}10&1\\15&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}200\\150\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}10&1\\15&1\end{matrix}\right))\left(\begin{matrix}10&1\\15&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}10&1\\15&1\end{matrix}\right))\left(\begin{matrix}200\\150\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}10&1\\15&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}10&1\\15&1\end{matrix}\right))\left(\begin{matrix}200\\150\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}10&1\\15&1\end{matrix}\right))\left(\begin{matrix}200\\150\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10-15}&-\frac{1}{10-15}\\-\frac{15}{10-15}&\frac{10}{10-15}\end{matrix}\right)\left(\begin{matrix}200\\150\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{1}{5}\\3&-2\end{matrix}\right)\left(\begin{matrix}200\\150\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\times 200+\frac{1}{5}\times 150\\3\times 200-2\times 150\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-10\\300\end{matrix}\right)
Do the arithmetic.
k=-10,b=300
Extract the matrix elements k and b.
10k+b=200
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
15k+b=150
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
10k+b=200,15k+b=150
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
10k-15k+b-b=200-150
Subtract 15k+b=150 from 10k+b=200 by subtracting like terms on each side of the equal sign.
10k-15k=200-150
Add b to -b. Terms b and -b cancel out, leaving an equation with only one variable that can be solved.
-5k=200-150
Add 10k to -15k.
-5k=50
Add 200 to -150.
k=-10
Divide both sides by -5.
15\left(-10\right)+b=150
Substitute -10 for k in 15k+b=150. Because the resulting equation contains only one variable, you can solve for b directly.
-150+b=150
Multiply 15 times -10.
b=300
Add 150 to both sides of the equation.
k=-10,b=300
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}