\left\{ \begin{array} { l } { 20 x + 8 x = 428 } \\ { 12 x + 2 y = 198 } \end{array} \right.
Solve for x, y
x = \frac{107}{7} = 15\frac{2}{7} \approx 15.285714286
y = \frac{51}{7} = 7\frac{2}{7} \approx 7.285714286
Graph
Share
Copied to clipboard
28x=428
Consider the first equation. Combine 20x and 8x to get 28x.
x=\frac{428}{28}
Divide both sides by 28.
x=\frac{107}{7}
Reduce the fraction \frac{428}{28} to lowest terms by extracting and canceling out 4.
12\times \frac{107}{7}+2y=198
Consider the second equation. Insert the known values of variables into the equation.
\frac{1284}{7}+2y=198
Multiply 12 and \frac{107}{7} to get \frac{1284}{7}.
2y=198-\frac{1284}{7}
Subtract \frac{1284}{7} from both sides.
2y=\frac{102}{7}
Subtract \frac{1284}{7} from 198 to get \frac{102}{7}.
y=\frac{\frac{102}{7}}{2}
Divide both sides by 2.
y=\frac{102}{7\times 2}
Express \frac{\frac{102}{7}}{2} as a single fraction.
y=\frac{102}{14}
Multiply 7 and 2 to get 14.
y=\frac{51}{7}
Reduce the fraction \frac{102}{14} to lowest terms by extracting and canceling out 2.
x=\frac{107}{7} y=\frac{51}{7}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}