\left\{ \begin{array} { l } { 20 x + 30 y = 1200 } \\ { 40 x + 10 y = 900 } \end{array} \right.
Solve for x, y
x=15
y=30
Graph
Share
Copied to clipboard
20x+30y=1200,40x+10y=900
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
20x+30y=1200
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
20x=-30y+1200
Subtract 30y from both sides of the equation.
x=\frac{1}{20}\left(-30y+1200\right)
Divide both sides by 20.
x=-\frac{3}{2}y+60
Multiply \frac{1}{20} times -30y+1200.
40\left(-\frac{3}{2}y+60\right)+10y=900
Substitute -\frac{3y}{2}+60 for x in the other equation, 40x+10y=900.
-60y+2400+10y=900
Multiply 40 times -\frac{3y}{2}+60.
-50y+2400=900
Add -60y to 10y.
-50y=-1500
Subtract 2400 from both sides of the equation.
y=30
Divide both sides by -50.
x=-\frac{3}{2}\times 30+60
Substitute 30 for y in x=-\frac{3}{2}y+60. Because the resulting equation contains only one variable, you can solve for x directly.
x=-45+60
Multiply -\frac{3}{2} times 30.
x=15
Add 60 to -45.
x=15,y=30
The system is now solved.
20x+30y=1200,40x+10y=900
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}20&30\\40&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1200\\900\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}20&30\\40&10\end{matrix}\right))\left(\begin{matrix}20&30\\40&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}20&30\\40&10\end{matrix}\right))\left(\begin{matrix}1200\\900\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}20&30\\40&10\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}20&30\\40&10\end{matrix}\right))\left(\begin{matrix}1200\\900\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}20&30\\40&10\end{matrix}\right))\left(\begin{matrix}1200\\900\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{20\times 10-30\times 40}&-\frac{30}{20\times 10-30\times 40}\\-\frac{40}{20\times 10-30\times 40}&\frac{20}{20\times 10-30\times 40}\end{matrix}\right)\left(\begin{matrix}1200\\900\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{100}&\frac{3}{100}\\\frac{1}{25}&-\frac{1}{50}\end{matrix}\right)\left(\begin{matrix}1200\\900\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{100}\times 1200+\frac{3}{100}\times 900\\\frac{1}{25}\times 1200-\frac{1}{50}\times 900\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\30\end{matrix}\right)
Do the arithmetic.
x=15,y=30
Extract the matrix elements x and y.
20x+30y=1200,40x+10y=900
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
40\times 20x+40\times 30y=40\times 1200,20\times 40x+20\times 10y=20\times 900
To make 20x and 40x equal, multiply all terms on each side of the first equation by 40 and all terms on each side of the second by 20.
800x+1200y=48000,800x+200y=18000
Simplify.
800x-800x+1200y-200y=48000-18000
Subtract 800x+200y=18000 from 800x+1200y=48000 by subtracting like terms on each side of the equal sign.
1200y-200y=48000-18000
Add 800x to -800x. Terms 800x and -800x cancel out, leaving an equation with only one variable that can be solved.
1000y=48000-18000
Add 1200y to -200y.
1000y=30000
Add 48000 to -18000.
y=30
Divide both sides by 1000.
40x+10\times 30=900
Substitute 30 for y in 40x+10y=900. Because the resulting equation contains only one variable, you can solve for x directly.
40x+300=900
Multiply 10 times 30.
40x=600
Subtract 300 from both sides of the equation.
x=15
Divide both sides by 40.
x=15,y=30
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}