\left\{ \begin{array} { l } { 20 ( x - y ) = 600 - 500 } \\ { 40 ( 2 y - x ) = 600 - 400 } \end{array} \right.
Solve for x, y
x=15
y=10
Graph
Share
Copied to clipboard
20x-20y=600-500
Consider the first equation. Use the distributive property to multiply 20 by x-y.
20x-20y=100
Subtract 500 from 600 to get 100.
80y-40x=600-400
Consider the second equation. Use the distributive property to multiply 40 by 2y-x.
80y-40x=200
Subtract 400 from 600 to get 200.
20x-20y=100,-40x+80y=200
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
20x-20y=100
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
20x=20y+100
Add 20y to both sides of the equation.
x=\frac{1}{20}\left(20y+100\right)
Divide both sides by 20.
x=y+5
Multiply \frac{1}{20} times 100+20y.
-40\left(y+5\right)+80y=200
Substitute y+5 for x in the other equation, -40x+80y=200.
-40y-200+80y=200
Multiply -40 times y+5.
40y-200=200
Add -40y to 80y.
40y=400
Add 200 to both sides of the equation.
y=10
Divide both sides by 40.
x=10+5
Substitute 10 for y in x=y+5. Because the resulting equation contains only one variable, you can solve for x directly.
x=15
Add 5 to 10.
x=15,y=10
The system is now solved.
20x-20y=600-500
Consider the first equation. Use the distributive property to multiply 20 by x-y.
20x-20y=100
Subtract 500 from 600 to get 100.
80y-40x=600-400
Consider the second equation. Use the distributive property to multiply 40 by 2y-x.
80y-40x=200
Subtract 400 from 600 to get 200.
20x-20y=100,-40x+80y=200
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}20&-20\\-40&80\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}100\\200\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}20&-20\\-40&80\end{matrix}\right))\left(\begin{matrix}20&-20\\-40&80\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}20&-20\\-40&80\end{matrix}\right))\left(\begin{matrix}100\\200\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}20&-20\\-40&80\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}20&-20\\-40&80\end{matrix}\right))\left(\begin{matrix}100\\200\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}20&-20\\-40&80\end{matrix}\right))\left(\begin{matrix}100\\200\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{80}{20\times 80-\left(-20\left(-40\right)\right)}&-\frac{-20}{20\times 80-\left(-20\left(-40\right)\right)}\\-\frac{-40}{20\times 80-\left(-20\left(-40\right)\right)}&\frac{20}{20\times 80-\left(-20\left(-40\right)\right)}\end{matrix}\right)\left(\begin{matrix}100\\200\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{1}{40}\\\frac{1}{20}&\frac{1}{40}\end{matrix}\right)\left(\begin{matrix}100\\200\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\times 100+\frac{1}{40}\times 200\\\frac{1}{20}\times 100+\frac{1}{40}\times 200\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\10\end{matrix}\right)
Do the arithmetic.
x=15,y=10
Extract the matrix elements x and y.
20x-20y=600-500
Consider the first equation. Use the distributive property to multiply 20 by x-y.
20x-20y=100
Subtract 500 from 600 to get 100.
80y-40x=600-400
Consider the second equation. Use the distributive property to multiply 40 by 2y-x.
80y-40x=200
Subtract 400 from 600 to get 200.
20x-20y=100,-40x+80y=200
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-40\times 20x-40\left(-20\right)y=-40\times 100,20\left(-40\right)x+20\times 80y=20\times 200
To make 20x and -40x equal, multiply all terms on each side of the first equation by -40 and all terms on each side of the second by 20.
-800x+800y=-4000,-800x+1600y=4000
Simplify.
-800x+800x+800y-1600y=-4000-4000
Subtract -800x+1600y=4000 from -800x+800y=-4000 by subtracting like terms on each side of the equal sign.
800y-1600y=-4000-4000
Add -800x to 800x. Terms -800x and 800x cancel out, leaving an equation with only one variable that can be solved.
-800y=-4000-4000
Add 800y to -1600y.
-800y=-8000
Add -4000 to -4000.
y=10
Divide both sides by -800.
-40x+80\times 10=200
Substitute 10 for y in -40x+80y=200. Because the resulting equation contains only one variable, you can solve for x directly.
-40x+800=200
Multiply 80 times 10.
-40x=-600
Subtract 800 from both sides of the equation.
x=15
Divide both sides by -40.
x=15,y=10
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}