\left\{ \begin{array} { l } { 2 y + x + y = 16 } \\ { 200 + 10 x + y - 227 = 100 y + 10 x + 2 y } \end{array} \right.
Solve for y, x
x = \frac{1697}{101} = 16\frac{81}{101} \approx 16.801980198
y=-\frac{27}{101}\approx -0.267326733
Graph
Share
Copied to clipboard
3y+x=16
Consider the first equation. Combine 2y and y to get 3y.
-27+10x+y=100y+10x+2y
Consider the second equation. Subtract 227 from 200 to get -27.
-27+10x+y=102y+10x
Combine 100y and 2y to get 102y.
-27+10x+y-102y=10x
Subtract 102y from both sides.
-27+10x-101y=10x
Combine y and -102y to get -101y.
-27+10x-101y-10x=0
Subtract 10x from both sides.
-27-101y=0
Combine 10x and -10x to get 0.
-101y=27
Add 27 to both sides. Anything plus zero gives itself.
y=-\frac{27}{101}
Divide both sides by -101.
3\left(-\frac{27}{101}\right)+x=16
Consider the first equation. Insert the known values of variables into the equation.
-\frac{81}{101}+x=16
Multiply 3 and -\frac{27}{101} to get -\frac{81}{101}.
x=16+\frac{81}{101}
Add \frac{81}{101} to both sides.
x=\frac{1697}{101}
Add 16 and \frac{81}{101} to get \frac{1697}{101}.
y=-\frac{27}{101} x=\frac{1697}{101}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}