\left\{ \begin{array} { l } { 2 y + 1 = - z - \frac { 2 } { 3 } x } \\ { 2 x + 3 y - z = 4 } \\ { 3 x + 2 y + z = \frac { 1 } { 3 } } \end{array} \right.
Solve for y, z, x
x=\frac{4}{7}\approx 0.571428571
y=\frac{31}{105}\approx 0.295238095
z = -\frac{69}{35} = -1\frac{34}{35} \approx -1.971428571
Share
Copied to clipboard
z=-2y-1-\frac{2}{3}x
Solve 2y+1=-z-\frac{2}{3}x for z.
2x+3y-\left(-2y-1-\frac{2}{3}x\right)=4 3x+2y-2y-1-\frac{2}{3}x=\frac{1}{3}
Substitute -2y-1-\frac{2}{3}x for z in the second and third equation.
y=\frac{3}{5}-\frac{8}{15}x x=\frac{4}{7}
Solve these equations for y and x respectively.
y=\frac{3}{5}-\frac{8}{15}\times \frac{4}{7}
Substitute \frac{4}{7} for x in the equation y=\frac{3}{5}-\frac{8}{15}x.
y=\frac{31}{105}
Calculate y from y=\frac{3}{5}-\frac{8}{15}\times \frac{4}{7}.
z=-2\times \frac{31}{105}-1-\frac{2}{3}\times \frac{4}{7}
Substitute \frac{31}{105} for y and \frac{4}{7} for x in the equation z=-2y-1-\frac{2}{3}x.
z=-\frac{69}{35}
Calculate z from z=-2\times \frac{31}{105}-1-\frac{2}{3}\times \frac{4}{7}.
y=\frac{31}{105} z=-\frac{69}{35} x=\frac{4}{7}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}