\left\{ \begin{array} { l } { 2 x - 5 ( y + 1 ) = 5 } \\ { - x + 2 ( y + 2 ) = 4 } \end{array} \right.
Solve for x, y
x=-20
y=-10
Graph
Share
Copied to clipboard
2x-5\left(y+1\right)=5,-x+2\left(y+2\right)=4
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x-5\left(y+1\right)=5
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2x-5y-5=5
Multiply -5 times y+1.
2x-5y=10
Add 5 to both sides of the equation.
2x=5y+10
Add 5y to both sides of the equation.
x=\frac{1}{2}\left(5y+10\right)
Divide both sides by 2.
x=\frac{5}{2}y+5
Multiply \frac{1}{2} times 10+5y.
-\left(\frac{5}{2}y+5\right)+2\left(y+2\right)=4
Substitute 5+\frac{5y}{2} for x in the other equation, -x+2\left(y+2\right)=4.
-\frac{5}{2}y-5+2\left(y+2\right)=4
Multiply -1 times 5+\frac{5y}{2}.
-\frac{5}{2}y-5+2y+4=4
Multiply 2 times y+2.
-\frac{1}{2}y-5+4=4
Add -\frac{5y}{2} to 2y.
-\frac{1}{2}y-1=4
Add -5 to 4.
-\frac{1}{2}y=5
Add 1 to both sides of the equation.
y=-10
Multiply both sides by -2.
x=\frac{5}{2}\left(-10\right)+5
Substitute -10 for y in x=\frac{5}{2}y+5. Because the resulting equation contains only one variable, you can solve for x directly.
x=-25+5
Multiply \frac{5}{2} times -10.
x=-20
Add 5 to -25.
x=-20,y=-10
The system is now solved.
2x-5\left(y+1\right)=5,-x+2\left(y+2\right)=4
Put the equations in standard form and then use matrices to solve the system of equations.
2x-5\left(y+1\right)=5
Simplify the first equation to put it in standard form.
2x-5y-5=5
Multiply -5 times y+1.
2x-5y=10
Add 5 to both sides of the equation.
-x+2\left(y+2\right)=4
Simplify the second equation to put it in standard form.
-x+2y+4=4
Multiply 2 times y+2.
-x+2y=0
Subtract 4 from both sides of the equation.
\left(\begin{matrix}2&-5\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\0\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&-5\\-1&2\end{matrix}\right))\left(\begin{matrix}2&-5\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\-1&2\end{matrix}\right))\left(\begin{matrix}10\\0\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&-5\\-1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\-1&2\end{matrix}\right))\left(\begin{matrix}10\\0\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\-1&2\end{matrix}\right))\left(\begin{matrix}10\\0\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-\left(-5\left(-1\right)\right)}&-\frac{-5}{2\times 2-\left(-5\left(-1\right)\right)}\\-\frac{-1}{2\times 2-\left(-5\left(-1\right)\right)}&\frac{2}{2\times 2-\left(-5\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}10\\0\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2&-5\\-1&-2\end{matrix}\right)\left(\begin{matrix}10\\0\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\times 10\\-10\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-20\\-10\end{matrix}\right)
Do the arithmetic.
x=-20,y=-10
Extract the matrix elements x and y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}