\left\{ \begin{array} { l } { 2 x ^ { 2 } + ( 2 m + 1 ) x + 2 m + 1 = 0 } \\ { x _ { 1 } ^ { 2 } + x _ { 2 } ^ { 2 } > 1 } \end{array} \right.
Solve for x
\left\{\begin{matrix}x=-\frac{\sqrt{4m^{2}-12m-7}}{4}-\frac{m}{2}-\frac{1}{4}\text{; }x=\frac{\sqrt{4m^{2}-12m-7}}{4}-\frac{m}{2}-\frac{1}{4}\text{, }&\left(m\leq -\frac{1}{2}\text{ and }|x_{1}|>\sqrt{1-x_{2}^{2}}\text{ and }|x_{2}|\leq 1\right)\text{ or }\left(|x_{2}|>1\text{ and }m\leq -\frac{1}{2}\right)\\x=-\frac{\sqrt{4m^{2}-12m-7}}{4}-\frac{m}{2}-\frac{1}{4}\text{; }x=\frac{\sqrt{4m^{2}-12m-7}}{4}-\frac{m}{2}-\frac{1}{4}\text{, }&\left(m\geq \frac{7}{2}\text{ and }|x_{1}|>\sqrt{1-x_{2}^{2}}\text{ and }|x_{2}|\leq 1\right)\text{ or }\left(m\geq \frac{7}{2}\text{ and }|x_{2}|>1\right)\end{matrix}\right.
Solve for x_2
\left\{\begin{matrix}x_{2}\in \mathrm{R}\text{, }&|x_{1}|>1\text{ and }m=-\frac{2x^{2}+x+1}{2\left(x+1\right)}\text{ and }x\neq -1\\x_{2}\in \left(\sqrt{1-x_{1}^{2}},\infty\right)\cup \left(-\infty,-\sqrt{1-x_{1}^{2}}\right)\text{, }&m=-\frac{2x^{2}+x+1}{2\left(x+1\right)}\text{ and }x\neq -1\end{matrix}\right.
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}