Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

24\left(x+5\right)=y
Consider the second equation. Multiply 12 and 2 to get 24.
24x+120=y
Use the distributive property to multiply 24 by x+5.
24x+120-y=0
Subtract y from both sides.
24x-y=-120
Subtract 120 from both sides. Anything subtracted from zero gives its negation.
2x+y=45,24x-y=-120
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x+y=45
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2x=-y+45
Subtract y from both sides of the equation.
x=\frac{1}{2}\left(-y+45\right)
Divide both sides by 2.
x=-\frac{1}{2}y+\frac{45}{2}
Multiply \frac{1}{2} times -y+45.
24\left(-\frac{1}{2}y+\frac{45}{2}\right)-y=-120
Substitute \frac{-y+45}{2} for x in the other equation, 24x-y=-120.
-12y+540-y=-120
Multiply 24 times \frac{-y+45}{2}.
-13y+540=-120
Add -12y to -y.
-13y=-660
Subtract 540 from both sides of the equation.
y=\frac{660}{13}
Divide both sides by -13.
x=-\frac{1}{2}\times \frac{660}{13}+\frac{45}{2}
Substitute \frac{660}{13} for y in x=-\frac{1}{2}y+\frac{45}{2}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{330}{13}+\frac{45}{2}
Multiply -\frac{1}{2} times \frac{660}{13} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=-\frac{75}{26}
Add \frac{45}{2} to -\frac{330}{13} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{75}{26},y=\frac{660}{13}
The system is now solved.
24\left(x+5\right)=y
Consider the second equation. Multiply 12 and 2 to get 24.
24x+120=y
Use the distributive property to multiply 24 by x+5.
24x+120-y=0
Subtract y from both sides.
24x-y=-120
Subtract 120 from both sides. Anything subtracted from zero gives its negation.
2x+y=45,24x-y=-120
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&1\\24&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}45\\-120\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&1\\24&-1\end{matrix}\right))\left(\begin{matrix}2&1\\24&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\24&-1\end{matrix}\right))\left(\begin{matrix}45\\-120\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&1\\24&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\24&-1\end{matrix}\right))\left(\begin{matrix}45\\-120\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\24&-1\end{matrix}\right))\left(\begin{matrix}45\\-120\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-24}&-\frac{1}{2\left(-1\right)-24}\\-\frac{24}{2\left(-1\right)-24}&\frac{2}{2\left(-1\right)-24}\end{matrix}\right)\left(\begin{matrix}45\\-120\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{26}&\frac{1}{26}\\\frac{12}{13}&-\frac{1}{13}\end{matrix}\right)\left(\begin{matrix}45\\-120\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{26}\times 45+\frac{1}{26}\left(-120\right)\\\frac{12}{13}\times 45-\frac{1}{13}\left(-120\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{75}{26}\\\frac{660}{13}\end{matrix}\right)
Do the arithmetic.
x=-\frac{75}{26},y=\frac{660}{13}
Extract the matrix elements x and y.
24\left(x+5\right)=y
Consider the second equation. Multiply 12 and 2 to get 24.
24x+120=y
Use the distributive property to multiply 24 by x+5.
24x+120-y=0
Subtract y from both sides.
24x-y=-120
Subtract 120 from both sides. Anything subtracted from zero gives its negation.
2x+y=45,24x-y=-120
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
24\times 2x+24y=24\times 45,2\times 24x+2\left(-1\right)y=2\left(-120\right)
To make 2x and 24x equal, multiply all terms on each side of the first equation by 24 and all terms on each side of the second by 2.
48x+24y=1080,48x-2y=-240
Simplify.
48x-48x+24y+2y=1080+240
Subtract 48x-2y=-240 from 48x+24y=1080 by subtracting like terms on each side of the equal sign.
24y+2y=1080+240
Add 48x to -48x. Terms 48x and -48x cancel out, leaving an equation with only one variable that can be solved.
26y=1080+240
Add 24y to 2y.
26y=1320
Add 1080 to 240.
y=\frac{660}{13}
Divide both sides by 26.
24x-\frac{660}{13}=-120
Substitute \frac{660}{13} for y in 24x-y=-120. Because the resulting equation contains only one variable, you can solve for x directly.
24x=-\frac{900}{13}
Add \frac{660}{13} to both sides of the equation.
x=-\frac{75}{26}
Divide both sides by 24.
x=-\frac{75}{26},y=\frac{660}{13}
The system is now solved.