\left\{ \begin{array} { l } { 2 x + 3 y = 1700 } \\ { 3 x + y = 1500 } \end{array} \right.
Solve for x, y
x=400
y=300
Graph
Share
Copied to clipboard
2x+3y=1700,3x+y=1500
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x+3y=1700
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2x=-3y+1700
Subtract 3y from both sides of the equation.
x=\frac{1}{2}\left(-3y+1700\right)
Divide both sides by 2.
x=-\frac{3}{2}y+850
Multiply \frac{1}{2} times -3y+1700.
3\left(-\frac{3}{2}y+850\right)+y=1500
Substitute -\frac{3y}{2}+850 for x in the other equation, 3x+y=1500.
-\frac{9}{2}y+2550+y=1500
Multiply 3 times -\frac{3y}{2}+850.
-\frac{7}{2}y+2550=1500
Add -\frac{9y}{2} to y.
-\frac{7}{2}y=-1050
Subtract 2550 from both sides of the equation.
y=300
Divide both sides of the equation by -\frac{7}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{3}{2}\times 300+850
Substitute 300 for y in x=-\frac{3}{2}y+850. Because the resulting equation contains only one variable, you can solve for x directly.
x=-450+850
Multiply -\frac{3}{2} times 300.
x=400
Add 850 to -450.
x=400,y=300
The system is now solved.
2x+3y=1700,3x+y=1500
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&3\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1700\\1500\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&3\\3&1\end{matrix}\right))\left(\begin{matrix}2&3\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&1\end{matrix}\right))\left(\begin{matrix}1700\\1500\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&3\\3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&1\end{matrix}\right))\left(\begin{matrix}1700\\1500\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&1\end{matrix}\right))\left(\begin{matrix}1700\\1500\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-3\times 3}&-\frac{3}{2-3\times 3}\\-\frac{3}{2-3\times 3}&\frac{2}{2-3\times 3}\end{matrix}\right)\left(\begin{matrix}1700\\1500\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}&\frac{3}{7}\\\frac{3}{7}&-\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}1700\\1500\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}\times 1700+\frac{3}{7}\times 1500\\\frac{3}{7}\times 1700-\frac{2}{7}\times 1500\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}400\\300\end{matrix}\right)
Do the arithmetic.
x=400,y=300
Extract the matrix elements x and y.
2x+3y=1700,3x+y=1500
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3\times 2x+3\times 3y=3\times 1700,2\times 3x+2y=2\times 1500
To make 2x and 3x equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by 2.
6x+9y=5100,6x+2y=3000
Simplify.
6x-6x+9y-2y=5100-3000
Subtract 6x+2y=3000 from 6x+9y=5100 by subtracting like terms on each side of the equal sign.
9y-2y=5100-3000
Add 6x to -6x. Terms 6x and -6x cancel out, leaving an equation with only one variable that can be solved.
7y=5100-3000
Add 9y to -2y.
7y=2100
Add 5100 to -3000.
y=300
Divide both sides by 7.
3x+300=1500
Substitute 300 for y in 3x+y=1500. Because the resulting equation contains only one variable, you can solve for x directly.
3x=1200
Subtract 300 from both sides of the equation.
x=400
Divide both sides by 3.
x=400,y=300
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}