\left\{ \begin{array} { l } { 2 x + 3 y + z = 15 } \\ { 2 x + 10 y + 2 z = 23 } \\ { x - y - 3 z = - 16 } \end{array} \right.
Solve for x, y, z
x = \frac{43}{11} = 3\frac{10}{11} \approx 3.909090909
y=\frac{9}{44}\approx 0.204545455
z = \frac{289}{44} = 6\frac{25}{44} \approx 6.568181818
Share
Copied to clipboard
z=-2x-3y+15
Solve 2x+3y+z=15 for z.
2x+10y+2\left(-2x-3y+15\right)=23 x-y-3\left(-2x-3y+15\right)=-16
Substitute -2x-3y+15 for z in the second and third equation.
y=\frac{1}{2}x-\frac{7}{4} x=-\frac{8}{7}y+\frac{29}{7}
Solve these equations for y and x respectively.
x=-\frac{8}{7}\left(\frac{1}{2}x-\frac{7}{4}\right)+\frac{29}{7}
Substitute \frac{1}{2}x-\frac{7}{4} for y in the equation x=-\frac{8}{7}y+\frac{29}{7}.
x=\frac{43}{11}
Solve x=-\frac{8}{7}\left(\frac{1}{2}x-\frac{7}{4}\right)+\frac{29}{7} for x.
y=\frac{1}{2}\times \frac{43}{11}-\frac{7}{4}
Substitute \frac{43}{11} for x in the equation y=\frac{1}{2}x-\frac{7}{4}.
y=\frac{9}{44}
Calculate y from y=\frac{1}{2}\times \frac{43}{11}-\frac{7}{4}.
z=-2\times \frac{43}{11}-3\times \frac{9}{44}+15
Substitute \frac{9}{44} for y and \frac{43}{11} for x in the equation z=-2x-3y+15.
z=\frac{289}{44}
Calculate z from z=-2\times \frac{43}{11}-3\times \frac{9}{44}+15.
x=\frac{43}{11} y=\frac{9}{44} z=\frac{289}{44}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}