\left\{ \begin{array} { l } { 2 x + 2 y + 2 z = 2 } \\ { 3 x - 2 y + 3 z = 5 } \\ { 2 x + y - 2 z = 2 } \end{array} \right.
Solve for x, y, z
x = \frac{13}{10} = 1\frac{3}{10} = 1.3
y=-\frac{2}{5}=-0.4
z=\frac{1}{10}=0.1
Share
Copied to clipboard
2x+y-2z=2 3x-2y+3z=5 2x+2y+2z=2
Reorder the equations.
y=2-2x+2z
Solve 2x+y-2z=2 for y.
3x-2\left(2-2x+2z\right)+3z=5 2x+2\left(2-2x+2z\right)+2z=2
Substitute 2-2x+2z for y in the second and third equation.
x=\frac{9}{7}+\frac{1}{7}z z=-\frac{1}{3}+\frac{1}{3}x
Solve these equations for x and z respectively.
z=-\frac{1}{3}+\frac{1}{3}\left(\frac{9}{7}+\frac{1}{7}z\right)
Substitute \frac{9}{7}+\frac{1}{7}z for x in the equation z=-\frac{1}{3}+\frac{1}{3}x.
z=\frac{1}{10}
Solve z=-\frac{1}{3}+\frac{1}{3}\left(\frac{9}{7}+\frac{1}{7}z\right) for z.
x=\frac{9}{7}+\frac{1}{7}\times \frac{1}{10}
Substitute \frac{1}{10} for z in the equation x=\frac{9}{7}+\frac{1}{7}z.
x=\frac{13}{10}
Calculate x from x=\frac{9}{7}+\frac{1}{7}\times \frac{1}{10}.
y=2-2\times \frac{13}{10}+2\times \frac{1}{10}
Substitute \frac{13}{10} for x and \frac{1}{10} for z in the equation y=2-2x+2z.
y=-\frac{2}{5}
Calculate y from y=2-2\times \frac{13}{10}+2\times \frac{1}{10}.
x=\frac{13}{10} y=-\frac{2}{5} z=\frac{1}{10}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}