Skip to main content
Solve for y, x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(y+7\right)-x=2,y+\frac{1}{2}x=1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2\left(y+7\right)-x=2
Choose one of the equations and solve it for y by isolating y on the left hand side of the equal sign.
2y+14-x=2
Multiply 2 times y+7.
2y-x=-12
Subtract 14 from both sides of the equation.
2y=x-12
Add x to both sides of the equation.
y=\frac{1}{2}\left(x-12\right)
Divide both sides by 2.
y=\frac{1}{2}x-6
Multiply \frac{1}{2} times x-12.
\frac{1}{2}x-6+\frac{1}{2}x=1
Substitute \frac{x}{2}-6 for y in the other equation, y+\frac{1}{2}x=1.
x-6=1
Add \frac{x}{2} to \frac{x}{2}.
x=7
Add 6 to both sides of the equation.
y=\frac{1}{2}\times 7-6
Substitute 7 for x in y=\frac{1}{2}x-6. Because the resulting equation contains only one variable, you can solve for y directly.
y=\frac{7}{2}-6
Multiply \frac{1}{2} times 7.
y=-\frac{5}{2}
Add -6 to \frac{7}{2}.
y=-\frac{5}{2},x=7
The system is now solved.
2\left(y+7\right)-x=2,y+\frac{1}{2}x=1
Put the equations in standard form and then use matrices to solve the system of equations.
2\left(y+7\right)-x=2
Simplify the first equation to put it in standard form.
2y+14-x=2
Multiply 2 times y+7.
2y-x=-12
Subtract 14 from both sides of the equation.
\left(\begin{matrix}2&-1\\1&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-12\\1\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&-1\\1&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}2&-1\\1&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}-12\\1\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&-1\\1&\frac{1}{2}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}-12\\1\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}-12\\1\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{2}}{2\times \frac{1}{2}-\left(-1\right)}&-\frac{-1}{2\times \frac{1}{2}-\left(-1\right)}\\-\frac{1}{2\times \frac{1}{2}-\left(-1\right)}&\frac{2}{2\times \frac{1}{2}-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-12\\1\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{2}\\-\frac{1}{2}&1\end{matrix}\right)\left(\begin{matrix}-12\\1\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\left(-12\right)+\frac{1}{2}\\-\frac{1}{2}\left(-12\right)+1\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2}\\7\end{matrix}\right)
Do the arithmetic.
y=-\frac{5}{2},x=7
Extract the matrix elements y and x.