\left\{ \begin{array} { l } { 2 ( x + 3 ) - 3 y = 2 } \\ { 5 x - 3 ( 2 y - 1 ) = - 4 } \end{array} \right\}
Solve for x, y
x=1
y=2
Graph
Share
Copied to clipboard
2\left(x+3\right)-3y=2,5x-3\left(2y-1\right)=-4
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2\left(x+3\right)-3y=2
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2x+6-3y=2
Multiply 2 times x+3.
2x-3y=-4
Subtract 6 from both sides of the equation.
2x=3y-4
Add 3y to both sides of the equation.
x=\frac{1}{2}\left(3y-4\right)
Divide both sides by 2.
x=\frac{3}{2}y-2
Multiply \frac{1}{2} times 3y-4.
5\left(\frac{3}{2}y-2\right)-3\left(2y-1\right)=-4
Substitute \frac{3y}{2}-2 for x in the other equation, 5x-3\left(2y-1\right)=-4.
\frac{15}{2}y-10-3\left(2y-1\right)=-4
Multiply 5 times \frac{3y}{2}-2.
\frac{15}{2}y-10-6y+3=-4
Multiply -3 times 2y-1.
\frac{3}{2}y-10+3=-4
Add \frac{15y}{2} to -6y.
\frac{3}{2}y-7=-4
Add -10 to 3.
\frac{3}{2}y=3
Add 7 to both sides of the equation.
y=2
Divide both sides of the equation by \frac{3}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{3}{2}\times 2-2
Substitute 2 for y in x=\frac{3}{2}y-2. Because the resulting equation contains only one variable, you can solve for x directly.
x=3-2
Multiply \frac{3}{2} times 2.
x=1
Add -2 to 3.
x=1,y=2
The system is now solved.
2\left(x+3\right)-3y=2,5x-3\left(2y-1\right)=-4
Put the equations in standard form and then use matrices to solve the system of equations.
2\left(x+3\right)-3y=2
Simplify the first equation to put it in standard form.
2x+6-3y=2
Multiply 2 times x+3.
2x-3y=-4
Subtract 6 from both sides of the equation.
5x-3\left(2y-1\right)=-4
Simplify the second equation to put it in standard form.
5x-6y+3=-4
Multiply -3 times 2y-1.
5x-6y=-7
Subtract 3 from both sides of the equation.
\left(\begin{matrix}2&-3\\5&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-7\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&-3\\5&-6\end{matrix}\right))\left(\begin{matrix}2&-3\\5&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\5&-6\end{matrix}\right))\left(\begin{matrix}-4\\-7\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&-3\\5&-6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\5&-6\end{matrix}\right))\left(\begin{matrix}-4\\-7\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\5&-6\end{matrix}\right))\left(\begin{matrix}-4\\-7\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{2\left(-6\right)-\left(-3\times 5\right)}&-\frac{-3}{2\left(-6\right)-\left(-3\times 5\right)}\\-\frac{5}{2\left(-6\right)-\left(-3\times 5\right)}&\frac{2}{2\left(-6\right)-\left(-3\times 5\right)}\end{matrix}\right)\left(\begin{matrix}-4\\-7\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2&1\\-\frac{5}{3}&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}-4\\-7\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\left(-4\right)-7\\-\frac{5}{3}\left(-4\right)+\frac{2}{3}\left(-7\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
Do the arithmetic.
x=1,y=2
Extract the matrix elements x and y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}