\left\{ \begin{array} { l } { 1911 ( x + y ) + 105 ( x - y ) = 2016 \times 190 } \\ { 105 ( x + y ) + 1911 ( x - y ) = 116 \times 201 } \end{array} \right.
Solve for x, y
x = \frac{33863}{336} = 100\frac{263}{336} \approx 100.782738095
y = \frac{29977}{301} = 99\frac{178}{301} \approx 99.591362126
Graph
Share
Copied to clipboard
1911x+1911y+105\left(x-y\right)=2016\times 190
Consider the first equation. Use the distributive property to multiply 1911 by x+y.
1911x+1911y+105x-105y=2016\times 190
Use the distributive property to multiply 105 by x-y.
2016x+1911y-105y=2016\times 190
Combine 1911x and 105x to get 2016x.
2016x+1806y=2016\times 190
Combine 1911y and -105y to get 1806y.
105x+105y+1911\left(x-y\right)=116\times 201
Consider the second equation. Use the distributive property to multiply 105 by x+y.
105x+105y+1911x-1911y=116\times 201
Use the distributive property to multiply 1911 by x-y.
2016x+105y-1911y=116\times 201
Combine 105x and 1911x to get 2016x.
2016x-1806y=116\times 201
Combine 105y and -1911y to get -1806y.
2016x+1806y=383040,2016x-1806y=23316
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2016x+1806y=383040
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2016x=-1806y+383040
Subtract 1806y from both sides of the equation.
x=\frac{1}{2016}\left(-1806y+383040\right)
Divide both sides by 2016.
x=-\frac{43}{48}y+190
Multiply \frac{1}{2016} times -1806y+383040.
2016\left(-\frac{43}{48}y+190\right)-1806y=23316
Substitute -\frac{43y}{48}+190 for x in the other equation, 2016x-1806y=23316.
-1806y+383040-1806y=23316
Multiply 2016 times -\frac{43y}{48}+190.
-3612y+383040=23316
Add -1806y to -1806y.
-3612y=-359724
Subtract 383040 from both sides of the equation.
y=\frac{29977}{301}
Divide both sides by -3612.
x=-\frac{43}{48}\times \frac{29977}{301}+190
Substitute \frac{29977}{301} for y in x=-\frac{43}{48}y+190. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{29977}{336}+190
Multiply -\frac{43}{48} times \frac{29977}{301} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{33863}{336}
Add 190 to -\frac{29977}{336}.
x=\frac{33863}{336},y=\frac{29977}{301}
The system is now solved.
1911x+1911y+105\left(x-y\right)=2016\times 190
Consider the first equation. Use the distributive property to multiply 1911 by x+y.
1911x+1911y+105x-105y=2016\times 190
Use the distributive property to multiply 105 by x-y.
2016x+1911y-105y=2016\times 190
Combine 1911x and 105x to get 2016x.
2016x+1806y=2016\times 190
Combine 1911y and -105y to get 1806y.
105x+105y+1911\left(x-y\right)=116\times 201
Consider the second equation. Use the distributive property to multiply 105 by x+y.
105x+105y+1911x-1911y=116\times 201
Use the distributive property to multiply 1911 by x-y.
2016x+105y-1911y=116\times 201
Combine 105x and 1911x to get 2016x.
2016x-1806y=116\times 201
Combine 105y and -1911y to get -1806y.
2016x+1806y=383040,2016x-1806y=23316
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2016&1806\\2016&-1806\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}383040\\23316\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2016&1806\\2016&-1806\end{matrix}\right))\left(\begin{matrix}2016&1806\\2016&-1806\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2016&1806\\2016&-1806\end{matrix}\right))\left(\begin{matrix}383040\\23316\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2016&1806\\2016&-1806\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2016&1806\\2016&-1806\end{matrix}\right))\left(\begin{matrix}383040\\23316\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2016&1806\\2016&-1806\end{matrix}\right))\left(\begin{matrix}383040\\23316\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1806}{2016\left(-1806\right)-1806\times 2016}&-\frac{1806}{2016\left(-1806\right)-1806\times 2016}\\-\frac{2016}{2016\left(-1806\right)-1806\times 2016}&\frac{2016}{2016\left(-1806\right)-1806\times 2016}\end{matrix}\right)\left(\begin{matrix}383040\\23316\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4032}&\frac{1}{4032}\\\frac{1}{3612}&-\frac{1}{3612}\end{matrix}\right)\left(\begin{matrix}383040\\23316\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4032}\times 383040+\frac{1}{4032}\times 23316\\\frac{1}{3612}\times 383040-\frac{1}{3612}\times 23316\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{33863}{336}\\\frac{29977}{301}\end{matrix}\right)
Do the arithmetic.
x=\frac{33863}{336},y=\frac{29977}{301}
Extract the matrix elements x and y.
1911x+1911y+105\left(x-y\right)=2016\times 190
Consider the first equation. Use the distributive property to multiply 1911 by x+y.
1911x+1911y+105x-105y=2016\times 190
Use the distributive property to multiply 105 by x-y.
2016x+1911y-105y=2016\times 190
Combine 1911x and 105x to get 2016x.
2016x+1806y=2016\times 190
Combine 1911y and -105y to get 1806y.
105x+105y+1911\left(x-y\right)=116\times 201
Consider the second equation. Use the distributive property to multiply 105 by x+y.
105x+105y+1911x-1911y=116\times 201
Use the distributive property to multiply 1911 by x-y.
2016x+105y-1911y=116\times 201
Combine 105x and 1911x to get 2016x.
2016x-1806y=116\times 201
Combine 105y and -1911y to get -1806y.
2016x+1806y=383040,2016x-1806y=23316
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2016x-2016x+1806y+1806y=383040-23316
Subtract 2016x-1806y=23316 from 2016x+1806y=383040 by subtracting like terms on each side of the equal sign.
1806y+1806y=383040-23316
Add 2016x to -2016x. Terms 2016x and -2016x cancel out, leaving an equation with only one variable that can be solved.
3612y=383040-23316
Add 1806y to 1806y.
3612y=359724
Add 383040 to -23316.
y=\frac{29977}{301}
Divide both sides by 3612.
2016x-1806\times \frac{29977}{301}=23316
Substitute \frac{29977}{301} for y in 2016x-1806y=23316. Because the resulting equation contains only one variable, you can solve for x directly.
2016x-179862=23316
Multiply -1806 times \frac{29977}{301}.
2016x=203178
Add 179862 to both sides of the equation.
x=\frac{33863}{336}
Divide both sides by 2016.
x=\frac{33863}{336},y=\frac{29977}{301}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}