\left\{ \begin{array} { l } { 180 = 3 k + b } \\ { 360 = 6 k + b } \end{array} \right.
Solve for k, b
k=60
b=0
Share
Copied to clipboard
3k+b=180
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
6k+b=360
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
3k+b=180,6k+b=360
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3k+b=180
Choose one of the equations and solve it for k by isolating k on the left hand side of the equal sign.
3k=-b+180
Subtract b from both sides of the equation.
k=\frac{1}{3}\left(-b+180\right)
Divide both sides by 3.
k=-\frac{1}{3}b+60
Multiply \frac{1}{3} times -b+180.
6\left(-\frac{1}{3}b+60\right)+b=360
Substitute -\frac{b}{3}+60 for k in the other equation, 6k+b=360.
-2b+360+b=360
Multiply 6 times -\frac{b}{3}+60.
-b+360=360
Add -2b to b.
-b=0
Subtract 360 from both sides of the equation.
b=0
Divide both sides by -1.
k=60
Substitute 0 for b in k=-\frac{1}{3}b+60. Because the resulting equation contains only one variable, you can solve for k directly.
k=60,b=0
The system is now solved.
3k+b=180
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
6k+b=360
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
3k+b=180,6k+b=360
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&1\\6&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}180\\360\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&1\\6&1\end{matrix}\right))\left(\begin{matrix}3&1\\6&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\6&1\end{matrix}\right))\left(\begin{matrix}180\\360\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&1\\6&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\6&1\end{matrix}\right))\left(\begin{matrix}180\\360\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\6&1\end{matrix}\right))\left(\begin{matrix}180\\360\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-6}&-\frac{1}{3-6}\\-\frac{6}{3-6}&\frac{3}{3-6}\end{matrix}\right)\left(\begin{matrix}180\\360\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{1}{3}\\2&-1\end{matrix}\right)\left(\begin{matrix}180\\360\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 180+\frac{1}{3}\times 360\\2\times 180-360\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}60\\0\end{matrix}\right)
Do the arithmetic.
k=60,b=0
Extract the matrix elements k and b.
3k+b=180
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
6k+b=360
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
3k+b=180,6k+b=360
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3k-6k+b-b=180-360
Subtract 6k+b=360 from 3k+b=180 by subtracting like terms on each side of the equal sign.
3k-6k=180-360
Add b to -b. Terms b and -b cancel out, leaving an equation with only one variable that can be solved.
-3k=180-360
Add 3k to -6k.
-3k=-180
Add 180 to -360.
k=60
Divide both sides by -3.
6\times 60+b=360
Substitute 60 for k in 6k+b=360. Because the resulting equation contains only one variable, you can solve for b directly.
360+b=360
Multiply 6 times 60.
b=0
Subtract 360 from both sides of the equation.
k=60,b=0
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}