\left\{ \begin{array} { l } { 177 x + 86 y = 246 } \\ { 123 x + 2014 = 354 } \end{array} \right.
Solve for x, y
x = -\frac{1660}{123} = -13\frac{61}{123} \approx -13.495934959
y = \frac{54013}{1763} = 30\frac{1123}{1763} \approx 30.636982416
Graph
Share
Copied to clipboard
123x=354-2014
Consider the second equation. Subtract 2014 from both sides.
123x=-1660
Subtract 2014 from 354 to get -1660.
x=-\frac{1660}{123}
Divide both sides by 123.
177\left(-\frac{1660}{123}\right)+86y=246
Consider the first equation. Insert the known values of variables into the equation.
-\frac{97940}{41}+86y=246
Multiply 177 and -\frac{1660}{123} to get -\frac{97940}{41}.
86y=246+\frac{97940}{41}
Add \frac{97940}{41} to both sides.
86y=\frac{108026}{41}
Add 246 and \frac{97940}{41} to get \frac{108026}{41}.
y=\frac{\frac{108026}{41}}{86}
Divide both sides by 86.
y=\frac{108026}{41\times 86}
Express \frac{\frac{108026}{41}}{86} as a single fraction.
y=\frac{108026}{3526}
Multiply 41 and 86 to get 3526.
y=\frac{54013}{1763}
Reduce the fraction \frac{108026}{3526} to lowest terms by extracting and canceling out 2.
x=-\frac{1660}{123} y=\frac{54013}{1763}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}