\left\{ \begin{array} { l } { 150 x + y = 35 } \\ { 200 x + y = 10 } \end{array} \right.
Solve for x, y
x=-\frac{1}{2}=-0.5
y=110
Graph
Share
Copied to clipboard
150x+y=35,200x+y=10
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
150x+y=35
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
150x=-y+35
Subtract y from both sides of the equation.
x=\frac{1}{150}\left(-y+35\right)
Divide both sides by 150.
x=-\frac{1}{150}y+\frac{7}{30}
Multiply \frac{1}{150} times -y+35.
200\left(-\frac{1}{150}y+\frac{7}{30}\right)+y=10
Substitute -\frac{y}{150}+\frac{7}{30} for x in the other equation, 200x+y=10.
-\frac{4}{3}y+\frac{140}{3}+y=10
Multiply 200 times -\frac{y}{150}+\frac{7}{30}.
-\frac{1}{3}y+\frac{140}{3}=10
Add -\frac{4y}{3} to y.
-\frac{1}{3}y=-\frac{110}{3}
Subtract \frac{140}{3} from both sides of the equation.
y=110
Multiply both sides by -3.
x=-\frac{1}{150}\times 110+\frac{7}{30}
Substitute 110 for y in x=-\frac{1}{150}y+\frac{7}{30}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{11}{15}+\frac{7}{30}
Multiply -\frac{1}{150} times 110.
x=-\frac{1}{2}
Add \frac{7}{30} to -\frac{11}{15} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{1}{2},y=110
The system is now solved.
150x+y=35,200x+y=10
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}150&1\\200&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}35\\10\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}150&1\\200&1\end{matrix}\right))\left(\begin{matrix}150&1\\200&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}150&1\\200&1\end{matrix}\right))\left(\begin{matrix}35\\10\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}150&1\\200&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}150&1\\200&1\end{matrix}\right))\left(\begin{matrix}35\\10\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}150&1\\200&1\end{matrix}\right))\left(\begin{matrix}35\\10\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{150-200}&-\frac{1}{150-200}\\-\frac{200}{150-200}&\frac{150}{150-200}\end{matrix}\right)\left(\begin{matrix}35\\10\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{50}&\frac{1}{50}\\4&-3\end{matrix}\right)\left(\begin{matrix}35\\10\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{50}\times 35+\frac{1}{50}\times 10\\4\times 35-3\times 10\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\\110\end{matrix}\right)
Do the arithmetic.
x=-\frac{1}{2},y=110
Extract the matrix elements x and y.
150x+y=35,200x+y=10
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
150x-200x+y-y=35-10
Subtract 200x+y=10 from 150x+y=35 by subtracting like terms on each side of the equal sign.
150x-200x=35-10
Add y to -y. Terms y and -y cancel out, leaving an equation with only one variable that can be solved.
-50x=35-10
Add 150x to -200x.
-50x=25
Add 35 to -10.
x=-\frac{1}{2}
Divide both sides by -50.
200\left(-\frac{1}{2}\right)+y=10
Substitute -\frac{1}{2} for x in 200x+y=10. Because the resulting equation contains only one variable, you can solve for y directly.
-100+y=10
Multiply 200 times -\frac{1}{2}.
y=110
Add 100 to both sides of the equation.
x=-\frac{1}{2},y=110
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}