\left\{ \begin{array} { l } { 15 x ^ { 2 } + 10 y ^ { 2 } = 13.75 } \\ { 3 x + 2 y = - 0.5 } \end{array} \right.
Solve for x, y
x=0.5\text{, }y=-1
x=-0.7\text{, }y=0.8
Graph
Share
Copied to clipboard
3x+2y=-0.5,10y^{2}+15x^{2}=13.75
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+2y=-0.5
Solve 3x+2y=-0.5 for x by isolating x on the left hand side of the equal sign.
3x=-2y-0.5
Subtract 2y from both sides of the equation.
x=-\frac{2}{3}y-\frac{1}{6}
Divide both sides by 3.
10y^{2}+15\left(-\frac{2}{3}y-\frac{1}{6}\right)^{2}=13.75
Substitute -\frac{2}{3}y-\frac{1}{6} for x in the other equation, 10y^{2}+15x^{2}=13.75.
10y^{2}+15\left(\frac{4}{9}y^{2}+\frac{2}{9}y+\frac{1}{36}\right)=13.75
Square -\frac{2}{3}y-\frac{1}{6}.
10y^{2}+\frac{20}{3}y^{2}+\frac{10}{3}y+\frac{5}{12}=13.75
Multiply 15 times \frac{4}{9}y^{2}+\frac{2}{9}y+\frac{1}{36}.
\frac{50}{3}y^{2}+\frac{10}{3}y+\frac{5}{12}=13.75
Add 10y^{2} to \frac{20}{3}y^{2}.
\frac{50}{3}y^{2}+\frac{10}{3}y-\frac{40}{3}=0
Subtract 13.75 from both sides of the equation.
y=\frac{-\frac{10}{3}±\sqrt{\left(\frac{10}{3}\right)^{2}-4\times \frac{50}{3}\left(-\frac{40}{3}\right)}}{2\times \frac{50}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10+15\left(-\frac{2}{3}\right)^{2} for a, 15\left(-\frac{1}{6}\right)\left(-\frac{2}{3}\right)\times 2 for b, and -\frac{40}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\frac{10}{3}±\sqrt{\frac{100}{9}-4\times \frac{50}{3}\left(-\frac{40}{3}\right)}}{2\times \frac{50}{3}}
Square 15\left(-\frac{1}{6}\right)\left(-\frac{2}{3}\right)\times 2.
y=\frac{-\frac{10}{3}±\sqrt{\frac{100}{9}-\frac{200}{3}\left(-\frac{40}{3}\right)}}{2\times \frac{50}{3}}
Multiply -4 times 10+15\left(-\frac{2}{3}\right)^{2}.
y=\frac{-\frac{10}{3}±\sqrt{\frac{100+8000}{9}}}{2\times \frac{50}{3}}
Multiply -\frac{200}{3} times -\frac{40}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=\frac{-\frac{10}{3}±\sqrt{900}}{2\times \frac{50}{3}}
Add \frac{100}{9} to \frac{8000}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{-\frac{10}{3}±30}{2\times \frac{50}{3}}
Take the square root of 900.
y=\frac{-\frac{10}{3}±30}{\frac{100}{3}}
Multiply 2 times 10+15\left(-\frac{2}{3}\right)^{2}.
y=\frac{\frac{80}{3}}{\frac{100}{3}}
Now solve the equation y=\frac{-\frac{10}{3}±30}{\frac{100}{3}} when ± is plus. Add -\frac{10}{3} to 30.
y=\frac{4}{5}
Divide \frac{80}{3} by \frac{100}{3} by multiplying \frac{80}{3} by the reciprocal of \frac{100}{3}.
y=-\frac{\frac{100}{3}}{\frac{100}{3}}
Now solve the equation y=\frac{-\frac{10}{3}±30}{\frac{100}{3}} when ± is minus. Subtract 30 from -\frac{10}{3}.
y=-1
Divide -\frac{100}{3} by \frac{100}{3} by multiplying -\frac{100}{3} by the reciprocal of \frac{100}{3}.
x=-\frac{2}{3}\times \frac{4}{5}-\frac{1}{6}
There are two solutions for y: \frac{4}{5} and -1. Substitute \frac{4}{5} for y in the equation x=-\frac{2}{3}y-\frac{1}{6} to find the corresponding solution for x that satisfies both equations.
x=-\frac{8}{15}-\frac{1}{6}
Multiply -\frac{2}{3} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=-\frac{7}{10}
Add -\frac{2}{3}\times \frac{4}{5} to -\frac{1}{6}.
x=-\frac{2}{3}\left(-1\right)-\frac{1}{6}
Now substitute -1 for y in the equation x=-\frac{2}{3}y-\frac{1}{6} and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{2}{3}-\frac{1}{6}
Multiply -\frac{2}{3} times -1.
x=\frac{1}{2}
Add -\left(-\frac{2}{3}\right) to -\frac{1}{6}.
x=-\frac{7}{10},y=\frac{4}{5}\text{ or }x=\frac{1}{2},y=-1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}