\left\{ \begin{array} { l } { 15 x + 12 y = 1950 } \\ { 7 x + 16 y = 1950 } \end{array} \right.
Solve for x, y
x=50
y=100
Graph
Share
Copied to clipboard
15x+12y=1950,7x+16y=1950
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
15x+12y=1950
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
15x=-12y+1950
Subtract 12y from both sides of the equation.
x=\frac{1}{15}\left(-12y+1950\right)
Divide both sides by 15.
x=-\frac{4}{5}y+130
Multiply \frac{1}{15} times -12y+1950.
7\left(-\frac{4}{5}y+130\right)+16y=1950
Substitute -\frac{4y}{5}+130 for x in the other equation, 7x+16y=1950.
-\frac{28}{5}y+910+16y=1950
Multiply 7 times -\frac{4y}{5}+130.
\frac{52}{5}y+910=1950
Add -\frac{28y}{5} to 16y.
\frac{52}{5}y=1040
Subtract 910 from both sides of the equation.
y=100
Divide both sides of the equation by \frac{52}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{4}{5}\times 100+130
Substitute 100 for y in x=-\frac{4}{5}y+130. Because the resulting equation contains only one variable, you can solve for x directly.
x=-80+130
Multiply -\frac{4}{5} times 100.
x=50
Add 130 to -80.
x=50,y=100
The system is now solved.
15x+12y=1950,7x+16y=1950
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}15&12\\7&16\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1950\\1950\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}15&12\\7&16\end{matrix}\right))\left(\begin{matrix}15&12\\7&16\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}15&12\\7&16\end{matrix}\right))\left(\begin{matrix}1950\\1950\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}15&12\\7&16\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}15&12\\7&16\end{matrix}\right))\left(\begin{matrix}1950\\1950\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}15&12\\7&16\end{matrix}\right))\left(\begin{matrix}1950\\1950\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{16}{15\times 16-12\times 7}&-\frac{12}{15\times 16-12\times 7}\\-\frac{7}{15\times 16-12\times 7}&\frac{15}{15\times 16-12\times 7}\end{matrix}\right)\left(\begin{matrix}1950\\1950\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{39}&-\frac{1}{13}\\-\frac{7}{156}&\frac{5}{52}\end{matrix}\right)\left(\begin{matrix}1950\\1950\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{39}\times 1950-\frac{1}{13}\times 1950\\-\frac{7}{156}\times 1950+\frac{5}{52}\times 1950\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\100\end{matrix}\right)
Do the arithmetic.
x=50,y=100
Extract the matrix elements x and y.
15x+12y=1950,7x+16y=1950
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
7\times 15x+7\times 12y=7\times 1950,15\times 7x+15\times 16y=15\times 1950
To make 15x and 7x equal, multiply all terms on each side of the first equation by 7 and all terms on each side of the second by 15.
105x+84y=13650,105x+240y=29250
Simplify.
105x-105x+84y-240y=13650-29250
Subtract 105x+240y=29250 from 105x+84y=13650 by subtracting like terms on each side of the equal sign.
84y-240y=13650-29250
Add 105x to -105x. Terms 105x and -105x cancel out, leaving an equation with only one variable that can be solved.
-156y=13650-29250
Add 84y to -240y.
-156y=-15600
Add 13650 to -29250.
y=100
Divide both sides by -156.
7x+16\times 100=1950
Substitute 100 for y in 7x+16y=1950. Because the resulting equation contains only one variable, you can solve for x directly.
7x+1600=1950
Multiply 16 times 100.
7x=350
Subtract 1600 from both sides of the equation.
x=50
Divide both sides by 7.
x=50,y=100
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}