\left\{ \begin{array} { l } { 134.5 x + 70.5 y = 5.689 } \\ { x + y = 21 \times 0.2 \times 10 } \end{array} \right.
Solve for x, y
x=-46.176734375
y=88.176734375
Graph
Share
Copied to clipboard
134.5x+70.5y=5.689,x+y=42
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
134.5x+70.5y=5.689
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
134.5x=-70.5y+5.689
Subtract \frac{141y}{2} from both sides of the equation.
x=\frac{2}{269}\left(-70.5y+5.689\right)
Divide both sides of the equation by 134.5, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{141}{269}y+\frac{5689}{134500}
Multiply \frac{2}{269} times -\frac{141y}{2}+5.689.
-\frac{141}{269}y+\frac{5689}{134500}+y=42
Substitute -\frac{141y}{269}+\frac{5689}{134500} for x in the other equation, x+y=42.
\frac{128}{269}y+\frac{5689}{134500}=42
Add -\frac{141y}{269} to y.
\frac{128}{269}y=\frac{5643311}{134500}
Subtract \frac{5689}{134500} from both sides of the equation.
y=88.176734375
Divide both sides of the equation by \frac{128}{269}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{141}{269}\times 88.176734375+\frac{5689}{134500}
Substitute 88.176734375 for y in x=-\frac{141}{269}y+\frac{5689}{134500}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{795706851}{17216000}+\frac{5689}{134500}
Multiply -\frac{141}{269} times 88.176734375 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=-46.176734375
Add \frac{5689}{134500} to -\frac{795706851}{17216000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-46.176734375,y=88.176734375
The system is now solved.
134.5x+70.5y=5.689,x+y=42
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}134.5&70.5\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5.689\\42\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}134.5&70.5\\1&1\end{matrix}\right))\left(\begin{matrix}134.5&70.5\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}134.5&70.5\\1&1\end{matrix}\right))\left(\begin{matrix}5.689\\42\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}134.5&70.5\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}134.5&70.5\\1&1\end{matrix}\right))\left(\begin{matrix}5.689\\42\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}134.5&70.5\\1&1\end{matrix}\right))\left(\begin{matrix}5.689\\42\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{134.5-70.5}&-\frac{70.5}{134.5-70.5}\\-\frac{1}{134.5-70.5}&\frac{134.5}{134.5-70.5}\end{matrix}\right)\left(\begin{matrix}5.689\\42\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{64}&-\frac{141}{128}\\-\frac{1}{64}&\frac{269}{128}\end{matrix}\right)\left(\begin{matrix}5.689\\42\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{64}\times 5.689-\frac{141}{128}\times 42\\-\frac{1}{64}\times 5.689+\frac{269}{128}\times 42\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2955311}{64000}\\\frac{5643311}{64000}\end{matrix}\right)
Do the arithmetic.
x=-\frac{2955311}{64000},y=\frac{5643311}{64000}
Extract the matrix elements x and y.
134.5x+70.5y=5.689,x+y=42
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
134.5x+70.5y=5.689,134.5x+134.5y=134.5\times 42
To make \frac{269x}{2} and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 134.5.
134.5x+70.5y=5.689,134.5x+134.5y=5649
Simplify.
134.5x-134.5x+70.5y-134.5y=5.689-5649
Subtract 134.5x+134.5y=5649 from 134.5x+70.5y=5.689 by subtracting like terms on each side of the equal sign.
70.5y-134.5y=5.689-5649
Add \frac{269x}{2} to -\frac{269x}{2}. Terms \frac{269x}{2} and -\frac{269x}{2} cancel out, leaving an equation with only one variable that can be solved.
-64y=5.689-5649
Add \frac{141y}{2} to -\frac{269y}{2}.
-64y=-5643.311
Add 5.689 to -5649.
y=\frac{5643311}{64000}
Divide both sides by -64.
x+\frac{5643311}{64000}=42
Substitute \frac{5643311}{64000} for y in x+y=42. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{2955311}{64000}
Subtract \frac{5643311}{64000} from both sides of the equation.
x=-\frac{2955311}{64000},y=\frac{5643311}{64000}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}