\left\{ \begin{array} { l } { 125 x + 110 y = 6100 } \\ { x + y = 50 } \end{array} \right.
Solve for x, y
x=40
y=10
Graph
Share
Copied to clipboard
125x+110y=6100,x+y=50
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
125x+110y=6100
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
125x=-110y+6100
Subtract 110y from both sides of the equation.
x=\frac{1}{125}\left(-110y+6100\right)
Divide both sides by 125.
x=-\frac{22}{25}y+\frac{244}{5}
Multiply \frac{1}{125} times -110y+6100.
-\frac{22}{25}y+\frac{244}{5}+y=50
Substitute -\frac{22y}{25}+\frac{244}{5} for x in the other equation, x+y=50.
\frac{3}{25}y+\frac{244}{5}=50
Add -\frac{22y}{25} to y.
\frac{3}{25}y=\frac{6}{5}
Subtract \frac{244}{5} from both sides of the equation.
y=10
Divide both sides of the equation by \frac{3}{25}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{22}{25}\times 10+\frac{244}{5}
Substitute 10 for y in x=-\frac{22}{25}y+\frac{244}{5}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-44+244}{5}
Multiply -\frac{22}{25} times 10.
x=40
Add \frac{244}{5} to -\frac{44}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=40,y=10
The system is now solved.
125x+110y=6100,x+y=50
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}125&110\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6100\\50\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}125&110\\1&1\end{matrix}\right))\left(\begin{matrix}125&110\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}125&110\\1&1\end{matrix}\right))\left(\begin{matrix}6100\\50\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}125&110\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}125&110\\1&1\end{matrix}\right))\left(\begin{matrix}6100\\50\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}125&110\\1&1\end{matrix}\right))\left(\begin{matrix}6100\\50\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{125-110}&-\frac{110}{125-110}\\-\frac{1}{125-110}&\frac{125}{125-110}\end{matrix}\right)\left(\begin{matrix}6100\\50\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}&-\frac{22}{3}\\-\frac{1}{15}&\frac{25}{3}\end{matrix}\right)\left(\begin{matrix}6100\\50\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}\times 6100-\frac{22}{3}\times 50\\-\frac{1}{15}\times 6100+\frac{25}{3}\times 50\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}40\\10\end{matrix}\right)
Do the arithmetic.
x=40,y=10
Extract the matrix elements x and y.
125x+110y=6100,x+y=50
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
125x+110y=6100,125x+125y=125\times 50
To make 125x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 125.
125x+110y=6100,125x+125y=6250
Simplify.
125x-125x+110y-125y=6100-6250
Subtract 125x+125y=6250 from 125x+110y=6100 by subtracting like terms on each side of the equal sign.
110y-125y=6100-6250
Add 125x to -125x. Terms 125x and -125x cancel out, leaving an equation with only one variable that can be solved.
-15y=6100-6250
Add 110y to -125y.
-15y=-150
Add 6100 to -6250.
y=10
Divide both sides by -15.
x+10=50
Substitute 10 for y in x+y=50. Because the resulting equation contains only one variable, you can solve for x directly.
x=40
Subtract 10 from both sides of the equation.
x=40,y=10
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}