Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

1200x+1000y=360000,180x+200y=6000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
1200x+1000y=360000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
1200x=-1000y+360000
Subtract 1000y from both sides of the equation.
x=\frac{1}{1200}\left(-1000y+360000\right)
Divide both sides by 1200.
x=-\frac{5}{6}y+300
Multiply \frac{1}{1200} times -1000y+360000.
180\left(-\frac{5}{6}y+300\right)+200y=6000
Substitute -\frac{5y}{6}+300 for x in the other equation, 180x+200y=6000.
-150y+54000+200y=6000
Multiply 180 times -\frac{5y}{6}+300.
50y+54000=6000
Add -150y to 200y.
50y=-48000
Subtract 54000 from both sides of the equation.
y=-960
Divide both sides by 50.
x=-\frac{5}{6}\left(-960\right)+300
Substitute -960 for y in x=-\frac{5}{6}y+300. Because the resulting equation contains only one variable, you can solve for x directly.
x=800+300
Multiply -\frac{5}{6} times -960.
x=1100
Add 300 to 800.
x=1100,y=-960
The system is now solved.
1200x+1000y=360000,180x+200y=6000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1200&1000\\180&200\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}360000\\6000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1200&1000\\180&200\end{matrix}\right))\left(\begin{matrix}1200&1000\\180&200\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1200&1000\\180&200\end{matrix}\right))\left(\begin{matrix}360000\\6000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1200&1000\\180&200\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1200&1000\\180&200\end{matrix}\right))\left(\begin{matrix}360000\\6000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1200&1000\\180&200\end{matrix}\right))\left(\begin{matrix}360000\\6000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{200}{1200\times 200-1000\times 180}&-\frac{1000}{1200\times 200-1000\times 180}\\-\frac{180}{1200\times 200-1000\times 180}&\frac{1200}{1200\times 200-1000\times 180}\end{matrix}\right)\left(\begin{matrix}360000\\6000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{300}&-\frac{1}{60}\\-\frac{3}{1000}&\frac{1}{50}\end{matrix}\right)\left(\begin{matrix}360000\\6000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{300}\times 360000-\frac{1}{60}\times 6000\\-\frac{3}{1000}\times 360000+\frac{1}{50}\times 6000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1100\\-960\end{matrix}\right)
Do the arithmetic.
x=1100,y=-960
Extract the matrix elements x and y.
1200x+1000y=360000,180x+200y=6000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
180\times 1200x+180\times 1000y=180\times 360000,1200\times 180x+1200\times 200y=1200\times 6000
To make 1200x and 180x equal, multiply all terms on each side of the first equation by 180 and all terms on each side of the second by 1200.
216000x+180000y=64800000,216000x+240000y=7200000
Simplify.
216000x-216000x+180000y-240000y=64800000-7200000
Subtract 216000x+240000y=7200000 from 216000x+180000y=64800000 by subtracting like terms on each side of the equal sign.
180000y-240000y=64800000-7200000
Add 216000x to -216000x. Terms 216000x and -216000x cancel out, leaving an equation with only one variable that can be solved.
-60000y=64800000-7200000
Add 180000y to -240000y.
-60000y=57600000
Add 64800000 to -7200000.
y=-960
Divide both sides by -60000.
180x+200\left(-960\right)=6000
Substitute -960 for y in 180x+200y=6000. Because the resulting equation contains only one variable, you can solve for x directly.
180x-192000=6000
Multiply 200 times -960.
180x=198000
Add 192000 to both sides of the equation.
x=1100
Divide both sides by 180.
x=1100,y=-960
The system is now solved.